Fixed-Point Calculator

Kushagra Gupta, Roman Hryntsiv

Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, MI
e-mails: kgupta@oakland.edu, rhryntsiv@oakland.edu

Abstract— Calculators are widely used in the real world.
Everyone uses it at least once in their lives. The fixed
point calculator is designed to perform calculations with
fixed point numbers. This project implements a fixed
point calculator by using the AXI-Full bus for
communication between PS and PL of the Xilinx Zybo
board.

1. INTRODUCTION

Fixed point representation is an efficient method to
represent fractional numbers in fixed number of bits. This is
highly required in embedded systems where the resources
available for computations are limited. Fixed point numbers
are widely used due to the benefits of them. The benefits of
fixed point arithmetic are that they are as straight-forward
and efficient as integers arithmetic in computers. We can
reuse all the hardware built for integer arithmetic to perform
real numbers arithmetic using fixed point representation. In
other words, fixed point arithmetic comes for free on
computers. It is a simple yet very powerful way to represent
fractional numbers.. By reusing all integer arithmetic
circuits of a computer, fixed point arithmetic is orders of
magnitude faster than floating point arithmetic. This is the
reason why it is being used in many game and DSP
applications. Even though fixed point numbers are easier to
implement and understand then floating point numbers, they
still require a certain order and general understanding. They
are represented and interpreted in a specific manner; thus,
we need a special calculator to perform arithmetic
operations on fixed point numbers. In this project, we
implemented addition, subtraction, and multiplication
operations of the fixed point calculator.

This project is implemented utilizing the AXI4-Full
protocol. The AXI protocol is used for the communication
between PS and peripheral. Advantage of the AXI4-Full
protocol is that it allows to read and write data in bursts,
therefore allowing to exchange more data at faster speed.

1I. METHODOLOGY

The complete calculator project can be broken down into
3 main parts: calculator body, AXI4- Full interface and
software design. Following diagram is the high level file
structure which provides the details about what part of logic

is implemented in which file for our HDL part.

—— calc_axi_ vl Owvhd = top axi4-full interface file
calc_axi vi 0 500 AXl.vhd = axi4-full interface

myAXI_IP.vhd = wrapper file for the circuit that implements
FIFOs and their connections

my_AXlfifo.vhd = includes iFIFo, oFIFO and FSM®@$5_AXI_ACLK
calc_axi_ip.vhd = wrapper around calculator and FSM@CLKFX

calc_brain.vhd = top file for calculator

A. Calculator body

Calculator body is the component responsible for
performing the fixed-point calculation. This is the
component that was fully designed by our team. It has 4
sub- components - Adder, Subtractor, Multiplier and
Divider. All the 4 components are designed to perform
operations on 32-bit numbers. As for the adder, subtractor
and multiplicator for our circuit we used the generic signed
adder, subtractor and multiplier. As for the divider we used a
generic unsigned divider that was transferred by us to the
signed divider [32 4]. The diagram of the transferred divider
is provided below.

0 A .
sza 36L |A,
ASG—I‘ BSJI
36|,
L
ITERATIVE |
DIVIDER E—E;I
0 >
361, 36)
N
36
P done

And here is the interconnection of our arithmetic units
and the rest of the datapath.

Xin s = fA
1 : a B a1
sclr 2 2
A B
>
E
= A
—= s
Yin_» = 0z 02 —3
= E
sclr B2 v = Zout
> = >
=] A .
£ = Q3 —eEdam sclr
B
= A
= a4 = =4 Qap
B
L—7
E El
I Ep
SV scip
reset e,
S mode

It works the following way. The values Xin and Yin, and
mode for our circuit are provided from the outside. The Xin
and Yin are 32 bit words and the mode is a 2 bit word. The
Xin and Yin are stored into our input registers and then they
go to our arithmetic units while mode goes directly into the
FSM. After the performance of the arithmetic units, the
output values go into the multiplexor. The outputs of the
adder and the subtractor are the 32 bit words; however, the
output of the multiplier is a 64 bits word. Here we perform
truncation. By doing the truncation we lose some of the
precision which is very little and has no effect on our final
project. The output of the divider needs to be truncated as
well because it consists of 36 bits. The reason we have 36
bits and not 32 is because we appended 4 zeros to it, to have
additional 4 zeroes after the period. At the multiplexor, only
one set of data from our arithmetic units is picked and
written into the output register. The output of the register is
the output of our calculator body.

The “brain” of this body is the FSM. The FSM controls
most of the signals in the circuitry. It is the most important
component in our calculator body, so we will cover it in
more details below. In a nutshell, the FSM is designed to
control the input data to the arithmetic units and to retrieve
the data from them. The diagram of the FSM is provided on
the right side of the page.

At the beginning, the reset value is given to make sure
that we have no random data on our registers. After the reset
is given we go to the state 1. During the state 1 we make
sure that the signal s is given, which means that our data is
ready to be read. After we receive s =1, we declare Ei and
sclri equal to 1. It allows the input register to get and store
the input data from inputs Xin and Yin. After that we go to
the state 2 where we produce a signal sd to our divider,
letting it know that the data is ready to be received.

53
Eo— 1, slero «+— 1

(i1} mod
o1
r

- "
10
h w
el +— 0D sed «— 01 sed «— 10 sal — 11
1

During the state 2 we also verify that the circuit has
enough time to process data. Since the arithmetic units are
mainly combinational circuits, we will have a roughly 20
clock cycle delay for our adder, subtractor and multiplier.
However, our divider requires at least 32 clock cycles delay
to perform the operation, so in the state 2 we embed a
counter into our FSM and make sure that it counts until 38.
Before the counter reaches 38, it stays in the state 2 and
adds one to its value every clock cycle. After the counter
reaches its maximum value it zeroes itself and we go to the
state 3 (the initial value of the counter is set to 0 to make
sure we start counting from the beginning.) After we wait
for 38 clock cycles, it is time to retrieve the data from our
arithmetic units. First, we have to make sure that our output
register is ready to receive the data. For that, before giving it
any value, we set the values of the signals Eo and sclro to 1.
After, we read the value of the signal mode which is given
from the iFIFO. The signal mode tells us what operation
must be performed. The FSM provides a signal sel which is
hooked up to the selector of the multiplexor. The inputs of

the multiplexor are the outputs of the arithmetic units.
Accordingly, the value of the signal mode creates a value of
the sel signal, and the correct data is loaded into the output
register. The last state is the state 4. In this state we produce
a signal done and verify that the value of s is 0. While the
value of s remains 1, we stay in state 5. After the value of's
is 0 we go to the state 1 and the cycle starts again.

The important part of a successful design is running a
behavioral simulation of a circuit to make sure everything
works properly. In our case we have a testbench for the
calculator body by itself, the body with the peripherals, and
the software testbench. The first testbench is a purely
VHDL testbench of the calculator body. The signals Xin,
Yin and mode are given certain values. Signals s is also
included in the testbench since it begins the cycle. At the
beginning we assign Xin and Yin as 1 and 3
correspondingly and wait for a clock cycle. After, we
correspond s as 1 and wait for 38 clock cycles to make sure
that the values are ready. After that, we have signal mode as
00 and signal s as 0. We have to add an additional few
cycles of wait, and after we could compare our data. After
that we change values of mode and run additional sets of
data to verify that all of the arithmetic units work properly.
This is the simple testbench regarding verifying that our
circuitry works.

-< >

B. AXI4- Full

To interconnect the PL and the PS part of the Zynq 7000,
we use AXI4-Full in this project. The advantage of using
AXI4-Full is that we can read/write data in bursts, so we
load the data into our circuit in the burst. To interface the
calculator peripheral with AXI-Full, we added some
additional circuitry described below the diagram. Following
diagram depicts the circuit designed for it.

S AXI_ARD
S _AXI_ARADDR
5_AXI ARLEN

S AXI ARSZE

5 _AXI_ARBURST
S_AXI_ARVALID
S_AXI_ARREADY

saxiawp |
S_AXl_AWADDR
S_AXI AWLEN
S_AX|_AWSIZE

Z
>
5

5_AXI_AWVALIC
$_AY_AWVALID

|

Fx Calculator

OFIFD515G2
W
» 32 - 2 s_ax1_RDATA
S AX_RID
S AXI RRESP.
S_AX|_RLAST
5_AXI_RVALD
S AXI_RREADY

|

S_AXI_WDATA >
S AXI_WSTRE

S AXI_WLAST [wren
S_AX_WVALID

!
]
is

|

S _AXI_WREADY

S_AXI BID < Fsm
S AXI BRESP o
S AX| BVALID
S _AXI_BREADY

§_AXIACIK

5_All_ARESETN

i
il

v ar,_ar_fiag

The provided above circuit contains two FIFOs, two
FSM machines, the calculator body described in the part A,
some additional registers, and “glue logic.” The memory
functions of our AXI peripherals perform by two FIFOs,
(the original memory was replaced by them) one for the
inputs and the other for the output signals. A massive
advantage of the FIFOs is that their inputs and outputs can
run on different frequencies, allowing users to implement
even circuits with different frequencies inside of the PSoC.
However, to implement that advantage we need to have
separate FSMs that would control the inputs and the outputs
of our FIFOs respectively. The first FSM is implemented by
the template, (modified to replace the original memory by
FIFOs) and it regulates the input of the iFIFO and the output
of the oFIFO. Both of them are run by the inside clock of
the chip, and the FSM can take care of both of them. The
FSM provides the FIFOs with signals wren for the iFIFO
and rden for the oFIFO that allow data to be written to the
iFIFO and to be read from the oFIFO. The iFIFO also has a
flag full, informing the FSM that the FIFO is full. The
oFIFO has a flag empty that informs that it's empty. Also,
one of the main functions of the first FSM is that it provides
the active high rst signal not only to the FIFOs, but also to
the rest of the components in the circuit. The RP outputs
tend to toggle erratically and the reset signal ensures that no
spurious data is transferred into oFIFO. The second FSM
controls the output of the iFIFO and the input of the oFIFO.
It also controls the calculator’s body and the “glue logic.”
This is the FSM that was fully developed by our team. The
FSM controls the output of the iFIFO and input of the
oFIFO similarly to the way the first FSM controls the input
of the iFIFO and the output of the oFIFO. It produces a
signal irden that allows data to be read from the outside
input of the iFIFO and a signal owren that allows data to be
written onto the oFIFO. Also, it checks for a signal iempty
from the iFIFO to check whether the iFIFO is not empty and
ofull from the oFIFO in order to verify that the oFIFO is not
full.

Additionally, the FSM controls the “glue logic,” specifically
the input registers of the “glue logic.” It gives the values Eri
to the registers that allow writing data onto them. In terms
of the calculator body, it provides it with the signal s that
signals the component inside of it to start performing the
calculation. When the calculator body finishes the

calculation, it inserts a signal done to our FSM. The FSM
diagram is provided below and the performance of it follows
it.

irden «1,Eri (1) « 1

FSM @ CLKFX

After the signal reset is given, we go to the state 1 where we
wait for signal iempty to be 1. If the signal is 0 we stay in
the state 1. After the signal iempty is 1 we go to the state 2
where we wait for signals iempty and ofull to be 0. If any of
them is 1 we stay in the state 2, but if they both are 0, we
give the signals irden and Eri (0) value of 1 and go to the
state 3. In the state 3 we wait for iempty and ofull to be 0
again, and stay in the state 3 if they’re not; however, this
time after they are 0 we give irden and Eri (1) value of 1,
instead of the signals irden and Eri (0) as it was in the state
2. After giving the signals irden and Eri (1) value of 1 we go
to state 4 where we again wait for the signals iempty and
ofull to be 0. We stay in the state 4 if any of them is 1, but if
both of them are 0 we give the signals irden and s value of
1. This is where the calculation process starts. In the state 5
we wait for the signal done to be inserted which means that
the calculation is finished. If done is 0, we stay at the state
5, but if the done is 1 we give owren the value of 1 and go to
the state 2. After that, the cycle starts again.

One of the last and most important parts of the AXI
peripheral circuit is reading the correct data from
S AXI RDATA. The signal S AXI VALID is inserted
when the right data is ready to be read. The signal comes
from the register that is connected to the AND gate. The
inputs of the AND gate are the signals oempty, mem_rden,
and the output of the register from the previous sentence.
That mini circuit guarantees that we get the right data at the
right time.

To verify the proper operations of our circuit we must test it
again by using another testbench. This time we used more

complex negative numbers, to see the full performance of
our circuit from those two testbenches.

C. Software Design

Our system includes the FPGA part (PL) and the ARM
microprocessor (PS) part of the Zynq 7000 chip. To make
the PL part fully embedded with the PS part we have a C
code for our system that would communicate directly with
the microprocessor. We use the C code for loading and
retrieving the data in and out of the circuit. Since we have a
lot of combinations of data for our circuit, we use an
external SD card for loading the data. The C code provides
us with the connection between the microprocessor and the
SD card. Also, it specifies the additional settings for loading
the data correctly into our calculator inputs. Finally, it
allows data to be kept and written as a text file into our SD
card from the outputs of our circuit. Since the SD card is a
FAT32 system, we have to configure the board support
package to use xilffs library. This library provides all the
functions to work with writing and reading data to/from the
SD card. To read data from the SD card, we mount the SD
card and then open the text file to read data from it. Since it
reads data from a text file, all the data would be read in
ASCII format. Therefore, we have added logic to decode
this data and convert it into useful hexadecimal numbers.
Since we read 32 bit hexadecimal numbers from the file, we
use the following logic to read data. We read all characters
in a loop and separate out separate numbers whenever a new
line character is read. We also convert ASCII values to
corresponding hexadecimal numbers. For example, A is
read as 65 which needs to be converted to 10(decimal
equivalent of hex number). After doing this conversion, we
construct a 32 bit hex number by multiplying a byte by
[gposition of byte - After we add all these values, we get a
equivalent hexadecimal number which can be written to
memory address.

The input data and the final results are also displayed as
hexadecimal characters on the SDK terminal via the UART
port.

To test our final project, we reuse the AXI4-FULL
peripheral we designed for cordic in Lab 3. We write the
input data into a test file which is loaded on the SD card.
Then this SDK software design was used to read data from

text files and write to memory registers. We displayed the
input data on the SDK terminal and its expected output data
that confirms the software design works as expected.

Read Text
File

Calculate Daa
Length

Isit endof Data

Mo

Load acharacter
from data

Reset Variables
Hex_num =0
=0

Isit New-line
character

Convert number
from ASCli to
Decimal | Dec_num)

Formulate hexdecimal number
Hex_num = Hex_num +Dec_num *16
Increment i

We read multiple text files which contain data for
different operations. This allows us to test the calculator on
hundreds of numbers on each operation. Displaying the data
on the SDK terminal is also very beneficial because we can
verify the output immediately instead of connecting the SD
card to the laptop and then reading the output file to verify
the results.

I11. EXPERIMENTAL SETUP

We tested each component individually in the project
before integrating all the components together and then the
final testing was done on the integrated project.

On the hardware side, we used Vivado test benches to
test the calculator for individual operations. Once all the
operations were tested, the axi-full peripheral was tested
using the Vivado test bench. During this testing, an issue
was identified where the calculator was reading only one

setup of inputs. It was identified and fixed with the help of
the professor.

For the software design, we started by reading and
writing data to text files on the SD card. The SDK terminal
was primarily used for debugging. We would display the
output of different processes implemented in the software on
SDK terminal to verify that each process worked as
expected. This helped us to easily pinpoint the problem and
fix it.

After this functionality was tested, we used lab3 project,
to test reading data from SD card, writing it to axi full bus
and reading the output which was further written to SD card.
We printed all the data which was written and read back
from the AXI bus which confirmed that data is not correctly
processed in hardware. Eventually, all the data to be written
to text files was also printed on SDK and compared with
text files to verify write operation is performed without any
issues.

After successful testing of hardware and software
design individually, we tested the integrated functionality.
Initially, we started with reading a few test data from text
files and writing corresponding output to text files. After
verifying the complete functionality, we tested it for a huge
set of input data and multiple input and output files.

IV. RESuLTS

Following are the test results which were obtained on the
SDK terminal.
Addition: Following is the snapshot of all the data
displayed on SDK terminal for addition operation.
B SDK Terminal 2

nnected to: Serial (COM®6, 5200,0,8

SD TEST - AXI4-Full Peripheral Fixed Point Calculator : Write/Read on text files

R KRR KRR AR AR AT AEEAE KA

Starting Calculator.......

Starting Addition.......

(load_sd_to_memory): Loading 'Input_a.txt' to memory
(load_sd_to_memaory) : File Size: 38 bytes
Close File: Success!

Number of characters read (including end of character): 38
Input data for Addition:

00000001

00000002

00200001

00200002

Number of test data read from file = 4
Writing Hex Number on AXI = 00000001
Writing Hex Number on AXI = 00000002
Writing Mode on AXl = 00000000
Writing Hex Number on AXI = 00200001
Writing Hex Number on AXI = 00200002
Writing Mode on AX1 = 00000000

Value read from axi = 00000003

\Value read from axi = 00400003

Qutput Data String for addition:
[00.000003 00.400003]

(write_data_to_sd): Writing memory data to "Output_a.txt’
(write_data_to_sd) : File Size: 38 bytes
Close File: Success!

Data written onto text file!

In this test, 4 numbers are read from the input file named
“Input_a.txt”. These 4 input numbers are written on axi bus
in a set of 2 inputs along with the operation to be performed

(0 represents addition). After writing all the inputs to axi
the bus, output of the addition operation is read from axi
bus. 2 numbers in the format [32 24] are read from axi bus

and are written on the output file “Output_a.txt”.

Subtraction: Similar to addition, following is the
snapshot of data written on SDK terminal for subtraction

operation.

B SDK Terminal 5 *XL=E
Connected to: Serial (COM, 115200,0, 8
Starting Subtraction.... "
FNE= S ——
(load_sdl_to_memory): Loading 'Input_s.xt" to memory

(load_sd_to_memory) : File Size: 38 bytes
Close File: Success!

Mumber of characters read (induding end of character): 38
Input data for subtraction

00000700

00000500

02000700

01000500

Number of test data read from fle = 4
Writing Hex Number on AXI = 00000700
Writing Hex Number on AXI = 00000500
Writing Mode on AXI = 00000001
Writing Hex Number on AXI = 02000700
Writing Hex Number on AXI = 01000500
Writing Mode on AXI = 00000001

Value read from axi = 00000200

Value read from axi = 01000200

Output Data String of Subtraction:
[00.000200 010002001

(write_data_to_sd): Writing memory data to ‘Qutput_s.txt'

(write_data_to_sd) : File Size: 38 bytes
Close File: Success!

For subtraction, we also tried reading 4 input numbers
and 1 is used to select the subtraction operation. Output

numbers are generated in format [32 24] and are written on

a text file.
Multiplication: Following snapshot data is for
multiplication operation.

! Problems | Tasks & Console [Properties & SDK Terminal &2 w7 =0

: Serial (COME, 115200, 0, 8

Starting Multiplication....... “
AR KT X

(load_sd_to_memory): Loading ‘Input_m.txt' to memory

(load_sd_ta_memory) : File Size: 38 bytes

Close File: Success!

Number of characters read (including end of character): 38
Input data for Multiplication :

40000000

20000000

04000000

03000000

Number of test data read from file = 4
\Writing Hex Number on AXI = 40000000
\Writing Hex Number on AXI = 20000000
'Writing Mode on AXI = 00000002
'Writing Hex Number on AXI = 04000000
Writing Hex Number on AXI = 03000000
\Writing Mode on AXI = 00000002

\Value read from axi = 08000000

\Value read from axi = 000C0000

Output Data String of Multiplication:
[0800.0000 000C.0000]

(write_data_to_sd): Writing memory data to ‘Output_m.bxt’
(write_data_to_sd) : File Size: 38 bytes

Close File: Success!

Data written onto text file!

Starting Division..w.
B e

(load_sd_to_memory): Loading ‘Input_d.txt' to memory
(load_sd_to_memory) ; File Size: 38 bytes
Close File: Success!

Again, we read 4 input numbers from the text file and
they are written on axi bus along with the operation
instruction which is 2 for multiplication. Output of
multiplication is provided in format [32 16] which are
written on output file “Output_m.txt”

Division: Following is the snapshot for division

[Problems =) Tasks B Console [Properties B SDK Terminal & *R4L=8

Serial (COM®, 115200, 0, 8

(write_data_to_sd): Writing memory data to ‘Output_m.txt
(write_data_to_sd) : File Size: 38 bytes
Close File: Success!

Data written onto text file!

Starting Division...

R —
(load_sd_to_memory}: Loading ‘Input_d.txt’ to memory
(load_sd_to_memory): Fle Size: 38 bytes

Close File: Success!

Number of characters read (including end of character): 38
Input data for Division:

40000000

10000000

140000000

20000000

Number of test data read from fle = 4
Writing Hex Number on AXI = 40000000
Writing Hex Number on AXI = 10000000
Writing Mede on AXI = 00000003
Writing Hex Number on AXI = 40000000
Writing Hex Number on AXI = 20000000
\Writing Mode on AXI = 00000003

Value read from axi = 00000040

Nalue read from ai = 00000020

Output Data String of Division:
[0000004.0 0000002.0]

(write_data_to_sd): Writing memory data to ‘Output_d.txt
(write_data_to_sd) : File Size: 38 bytes
Close File: Success!

Data written onto text file!
v

I | send | Clear

4 input numbers are read from a text file which are
written on axi bus along with 3 which represents division
operation. Two outputs are obtained in format [32 4] which
are written on a text file.

Following are the SDK snapshots when we read 220
input numbers to perform addition operation.This snapshot
shows that 2198 bytes are read from the input text file which
is a list of 220 numbers.

B SDK Terminal i3

onnected to: Serial { COM®6, 115200, 0, 8)

SD TEST - AXI4-Full Peripheral Fixed Point Calculator : Write/Read on text files

B e—

Starting Calculator......

Starting Addition......

(load_sd_to_memory): Loading 'Input_a.txt' to memory
(load_sd_to_memary) : File Size: 2198 bytes
Close File: Success!

Number of characters read (including end of character): 2198
Input data for Addition:
00010001
00010001
02203301
01107701
00010001
00010001
02203301
01107701
00010001
00010001
02203301
01107701
00010001
00010001
02203301
01107701
00010001
00010001
02203301
<

\
Following snapshot shows writing of 220 input numbers
to the axi bus along with mode (0 for addition).

%! Problems < Tasks & Console [Properties E

Mumber of test data read from file = 220

Writing Hex Mumber on AX]l = 00010001

Writing Hex Number on AXl = 00010001

Writing Mode on AXl = 00000000

Writing Hex Number on AXl = 02203301

Writing Hex Mumber on AXl = 01107701

Writing Mode on AXl = 00000000

Writing Hex Number on AXl = 00010001

Writing Hex Number on AXl = 00010001

Writing Mode on AXI = 00000000

Writing Hex Number on AXl = 02203301

Following snapshot shows the output data which is

written on the output text file (truncated in image due to
large size)

Following is the snapshot of input and output text files
used for multiplication operation. In the input text file, 100
numbers are present and the output test file has 50 numbers.

Send

3 1) Output_m.txt - Notepad - o x
Fle Edit Format View Help

~ Mlbseo. 0000 000C.2CC3 0003.1815 ©000.1E53 0000.006E
0003.1815 0000.1E53 0000.006E ©0BO.01CO 0080.0304

File Edit For
40000000
20000000
04004020
03080000
02000700
01200500
00080700
02000700
00080700
00020500
02000700
01200500
00080700
02000700
00080700
00020500
02000700
40000000
20000000
04004020
03080000
02000700
01200500
00080700
02000700
00080700
00020500
02000700
01200500
00080700
02000700
00080700
00020500
02000700
40000000
20000000
04004020
03080000
02000700
01200500
00080700
02000700
00080700
00020500
02000700
01200500

Lt 100% Windows (CRLF)

0008.5E55 0000.0C68 0000.1E53 0000.1BSE 0000.0C68
0000.1E53 0000.1B3E 0300.0000 @00C.2(C3 0003.1815
0000.1E53 0000.006E 0003.1815 0000.1E53 0000.006E
00B0.01C0 0080.0304 0008.5ES5 0000.0C68 0000.1E53
0000.1BSE 0000.0C68 0000.1E53 0000.1BSE 0800.0000
000C.2CC3 0003.1815 0000.1E53 0000.006E 0003.1815
0000.1E53 0000.006E 00BO.01CO 0080.0304 0008.5ESS
0000.0C68 0000.1E53 0000.1BSE 0000.0C68 0000.1E53

UTF-8

Ln1,Col 1 100% Windows (CRLF) UTF-8

02 03304402 00020002 03.30AA02 00.020002

¢

V.

By finishing this project we fully implemented the fixed
point calculator that can perform addition, subtraction,
multiplication and division.
The original idea was to implement the calculator without
the division portion, but eventually we implemented that
part as well. After adding the subtraction part, we created
the completed calculator fully integrated calculator to the
ZYNQ board.
There’s a few adjustments that might be done to perfect this
calculator such as adding the overflow or improve the SDK
terminal part or the output text files design, so that the
results would be easily readable.
Another improvement which can be done is to use binary
files instead of text files for reading input data and writing
output data. We chose text files because they are easily
readable. However, the professor suggested that binary files
are more efficient as they do not store data in character
format and no new line characters are required at the end of
each line. We were able to read large amounts of data using
text files but for industry applications, binary files are
preferred as they can store more in small size compared to
text files.

However, they are mainly additional changes and even
without them the calculator is fully functional and performs
its main functions well.

CONCLUSION

VI. REFERENCES

[1] Daniel Llamocca, “Unit 1 - Computer Arithmetic” in
ECE-5736 Reconfigurable Computing

[2] Daniel Llamocca, “Unit 5 - Embedded Systems in
PSoC” in ECE-5736 Reconfigurable Computing.

[3] Manual by Digilent, “Zybo Reference Manual,” Digilent
Reference. [Online]. Available:

https://digilent.com/reference/programmable-logic/zybo/refe
rence-manual [Accessed: 10-June-2022].

[4] Martin A. Enderwitz, Crockett H. Louise, Ross A. Elliot,
”The Zynq Tutorials For Zybo And Zedboard,” Strathclyde
Academic Media: August 12, 2015

[5] Martin A. Enderwitz, Ross A. Elliot, Crockett H. Louise,
Robert W. Stewart, ”The Zynq Book: Embedded processing
with the ARM® Cortex®-A9 on the Xilinx® Zynq®-7000
All Programmable SoC,” Strathclyde Academic Media:
2014

[6] Daniel Llamocca, “Embedded System Design for Zynq
PSoC” in ECE-5736 Reconfigurable Computing.

https://digilent.com/reference/programmable-logic/zybo/reference-manual
https://digilent.com/reference/programmable-logic/zybo/reference-manual

