

Dual Fixed-Point Calculator

Gabriel Ramirez, Austin Nolen

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

anolen@oakland.edu, gabrielramirez@oakland.edu

Abstract - This project demonstrates the design and test of a

Dual-Fixed Point calculator. The calculator functions

implemented include addition, subtraction, multiplication, and

division. The calculator architecture design was built and tested

on an FPGA. An AXI interface was used to interconnect

software and hardware to input operands and receive results.

I. INTRODUCTION

In computer arithmetic, there are several ways to

represent numbers. Two of the most common are fixed-

point and floating point. Fixed-point numbers are

represented as an n-bit number with p fractional bits, i.e. [n

p]. One advantage of using fixed-point is the low resource

usage on a system. They are treated as integers in any

arithmetic operation once the fractional bits are aligned. The

disadvantage is the dynamic range. A number can be

represented in any given form of fixed-point but once you

have chosen an n and p you are limited in your dynamic

range.

Floating point, on the other hand, has a much higher

dynamic range than fixed-point. However, this comes with a

compromise on resource usage. In applications where

system resources are very lean, floating point would not be a

good choice.

Dual fixed-point numbers are an attempt at solving the

disadvantages of both fixed-point and floating point. This

method of number representation involves an exponent E

bit, followed by a signed n-1 bit significand. The exponent

can be either 0 to 1 indicating two possible scaling. The

formal representation is written as [n p0 p1]. An exponent

with value 0 indicates p0 and 1 indicates p1. This allows the

one to represent a very large integer with less fractional bits,

or very small numbers with many fractional bits. This

method effectively solves the problem of fixed-point

numbers while maintaining a low resource usage.

This project will demonstrate the build and test of each

component of the dual fixed-point calculator. We will show

the design process that we followed utilizing topics learned

in class along with testing and validation. The details of the

AXI peripheral and software implementation will also be

discussed. Dual fixed-point numbers hold a lot of potential

to be useful in many different electrical engineering

applications in today's world. This project hopes to show

just one of those purposes.

II. METHODOLOGY

A. Adder/Subtractor

The Adder/subtractor was designed based on the
architecture presented in class on Dual fixed-point addition
and subtraction [2]. To add or subtract two dual fixed point
numbers, one must first convert the numbers to fixed-point
form. This is done in the pre-scaler of the adder/subtractor
architecture. The pre-scaler also aligns the fractional points
of the numbers so that they can be added or subtracted
properly. This may cause some bits to be truncated. However,
we can save these truncated bits and add them on in the post-
scaler.

Once the operands are aligned it is time to perform
addition or subtraction. We signed extend the numbers to n
bits so the result will have n bits with p1 or p0 fractional bits.
This addition will not result in overflow, however we must
take the result as an n-1 bit number which could result in
overflow.

The result of the addition/subtraction then feeds into
the post-scaler component. In this part we determine which
form num1 or num0 we will represent the fixed-point
number. The ranged detector takes the fixed-point output in
the same form as the input and determines what scaling it
should be represented as. IN the case where left shifting is
needed, we can use the truncated bits that were saved in the
pre-scaler and shift them into the result. This will help
maintain the accuracy of the adder.

Another important piece of the adder/subtractor
architecture is the control block. This block controls a 3 to 1
multiplexor that chooses which output will be the final result.
This block takes the overflow bit, the output of the range
detector, and the scaling of the output number to determine
the final result. Here, there are three possible options, keep
the output in the same scaling after addition/subtraction,
convert from p0 to p1, or convert from p1 to p0.

Figure 1: Adder/Subtractor Architecture

B. Multiplier

 The multiplier architecture design was modified
from Professor Llamocca’s Unit 1 lesson notes [1]. The
process is as follows. Remove the exponent bit from the 16
bits of data forming each operand and convert the operands
to their absolute values. Using the bit values of Operand2
create vectors with Operand1 bit shifted to the left
corresponding to the bit position of Operand2. Add all of the
vectors formed from the previous operation. Checking the
sign of the original operands, decide if the resulting value
should remain positive or needs to be converted to its
negative representation. This result has no fractional bits.
Using the exponent values from the original data, determine
how many fractional bits the resulting product contains.
After determining the fractional bits check to see if the
integer bits can be correctly represented by 7 or 11 bits.
Specifically this was done by looking at the seventh integer
bit and seeing if all leading bits were the same value. If this
is true then it can be determined that the integer can be
represented by 7 bits. Extend the number using as many
fractional bits as necessary to have 15 bits total in the end
result. Finally add the exponent bit to the result as the MSB.

Figure 2: Multiplier Block Diagram

C. Divider

The divider architecture design was based around

the method of unsigned iterative division [1]. To perform

division on a dual fixed-point number, one must first convert

the operands into fixed-point form. This is done by simply

removing the exponent bit from the nth bit, leaving an n-1 bit

signed significand. If the significand is a negative number

then a 2’s complement operation must be performed in order

to get two unsigned numbers. Then, we must align the

fractional bits so that we can perform integer division. To do

this we look at the nth-bit exponent of both operands. If the

exponents are the same they are already aligned. If one of the

operands is in the p1 scaling we must convert the other

operand into the same scaling. This operation does involve

truncating bits from the number being converted so we lose

some accuracy. This conversion from dual fixed-point,

signed to unsigned, and fractional bit alignment is completed

in the pre-scaler section of the block diagram shown below.

The final output of the pre-scaler should be two 15-

bit unsigned fixed point aligned numbers, dividend and

divisor. Now, we have the option to add precision bits to the

dividend to improve the precision on the output of the divider.

The dividend in this project was tested using both 0 bits of

precision to validate basic function, as well as 2 bits of

precision. The two bits are added onto the end of the 15-bit

dividend making it 17-bits. Adding precision does add cycles

to the processing time, so in fast applications it should only

be done if necessary.

The unsigned integer divider was based on a design

presented in class notes [2]. Shown in figure 3 below is the

architecture.

Figure 3: Iterative Unsigned Divider

The design includes an M-bit register, with an M-bit and N-

bit left shift registers, a subtractor, and a finite-state

machine. With operands N-bit A and M-bit B the divider

will shift in the next bit of A or shift in A and subtract B at

every clock cycle. The finite-state machine controls the

inputs of all the registers to work in sequence with each

other. After N cycles the output Q holds the result.

The results Q contains the integer result and

precision bits if they were added. To get the final result in

fixed-point we slice the output based on where the fractional

point is and align it back to the proper scaling. In this

design, the output of the divider is two results for the same

number, one in p0 form and one in p1.

The output of the unsigned integer divider feeds

into a post-scaler circuit. This circuit first takes the unsigned

output and inputs it into a range detector block. This block

determines which scaling the output should fit in based on

the size of the number. The post-scaler also performs a 2’s

complement operation based on the signs of the input

operands.

Figure 4: Divider Block Diagram

D. AXI Interface

An AXI-Lite Interface was designed around the

calculator IP. We chose the Lite interface because we did

not need the capability to FIFO data into the calculator.

Also, a calculator is traditionally used in a 1 input per 1

output fashion which the Lite interface allowed us to do.

The interface was designed using 3 slave registers, two on

the input side and one on the output. Each slave register of

the AXI can hold a maximum of 32 bits of data. Since our

input operands are both 16 bits each, we were able to use 1

slave register on the input to hold both operands.

The second slave register was used to select

between which of the calculator functions was active. We

did this using a 4 to 1 multiplexor on the output with two

selection bits to decide between calculator functions. We

also used the AXI reset and clock signals primarily for the

iterative unsigned divider which contains a finite-state

machine that relies on these signals to function properly.

Shown in the diagram below is the AXI peripheral

architecture.

Figure 5: AXI Lite Block Diagram

E. Software

The software component of the project was

designed using Vivado SDK in C programming language. It

was designed to simply write to the slave registers of the

AXI peripheral and then read the results of the calculator of

the output slave register. This effectively demonstrated the

interface between hardware and software using the Zybo

board.

 The figure below shows the full block diagram of

the Zynq processing system as it is connected to the

calculator utilizing the AXI-Lite interface. This design step

is crucial to allowing us to use the software program to

interface with the calculator. During this design step we

setup a base address for writing and reading data to the

Zybo board memory.

This base address is used in the c program to write

the operands and the calculator function selection bits.

Figure 6: Design Block Diagram

III. EXPERIMENTAL SETUP

During the design process, each component of the
calculator was individually tested before it was integrated
into the final product. This was done primarily using Vivado.
A test bench was written to simulate input signals and read
outputs on each component. The purpose of this was to
validate that each component worked properly as a stand-
alone device and to understand how each one operated.

We also tested the AXI-Lite interface including the
full calculator design before it was interfaced with the
software. This was done only after we validated that each
component worked on its own.

Without these crucial steps, it would have been
much more difficult to troubleshoot later down the design
process when we began combining the components into the
fully finished product. Lastly, once the entire design was
connected, we used Vivado SDK to write inputs and read
outputs from the calculator.

IV. RESULTS

A. Adder/Subtractor
 The adder/subtractor as a complete component was
taken from Unit 7: Dynamic Dual Fixed-Point Adder with
interrupt-based reconfiguration (ZYBO Z7-10). Various
additions and subtractions were used to test the functionality
of this component. Special attention was given to mixed
exponent values in order to test the robustness of the adder
and subtractor in handling DFX numbers. Two numbers of
particular interest are x3200 (Dec 50) and x8260 (Dec 100).
3200 is a num0 in the [16 8 4] DFX format while 8260 is
num1.

Figure 7: Adder/Subtractor results

B. Multiplier
 The multiplier was tested in a similar fashion to the
adder/subtractor. Multiple operands were used to check the
full functionality of the component. Num0 and Num1 DFX
numbers were considered as well as mixed sign operands.
The latter is of special interest in order to determine that the
sign2unsign component conversions were being performed
correctly.
 The multiplier test benching did take some
significant debugging. This was a bit of a surprise because
the project was functioning at the SDK level even before the
test bench was fully developed. The failure was that when
reading the result data from the calculator the data was
showing up in the test bench as undefined. After careful
inspection, it was found that the component, myMultiAdder,
contained variables that were not initialized. This undefined
data resulted in an undefined result being shown at the test
bench level.

Figure 8: Multiplier Simple results

Figure 9: Multiplier Negative results

C. Divider

Shown in the figures below are the testbench results
of the divider IP. The divider was tested using different
combinations of operands in terms of scaling value and sign.
This was done to test that not only the division was working
properly but that the pre-scaler, range detection, and 2’s
complement circuits were also functioning. The divider takes
N+1 cycles to complete a division operation. So in the
testbench, after two operands were written the E signal would
go high which triggers the divider circuitry. After N+1 cycles
the result Q is available.

Figure 10 shows the dividend 4 and divisor 1 in n0
and n1 scaling, respectively. We see the correct result 2. This
demonstrates that the pre-scaler circuit converted the divisor
2 into n1 form before completing the division.

Figure 10: Dividend 4 (n0) Divisor 2 (n1)

Figure 11 shows the dividend -30 and divisor 2 in

n0 and n1 scaling, respectively. We see the correct answer
output, -15. This demonstrates that the 2’s complement
operation worked as it should by detecting a negative operand
and complementing the output.

Figure 11: Dividend -30 (n0) Divisor 2 (n1)

Figure 12 shows the dividend -9 and divisor -3 both

in n0 scaling. We see the correct answer 3. This demonstrates
the pre-scaler circuit correctly identifying the two operands
having the same scaling and also performing the 2’s
complement operation before division due to both operands
being negative.

Figure 12: Dividend -9 (n0) Divisor -3 (n0)

Figure 13 below shows the dividend 7.5 and divisor
2.5 both in n0 scaling. This test demonstrates two operands
that have fractional bits.

Figure 13: Dividend 7.5 (n0) and 2.5 (n0)

D. Full Design
 The Adder/Subtractor, Multiplier, and Divider were
integrated into a larger Calculator IP. The Adder/Subtractor
and Multiplier performed as expected on the test bench.
Unfortunately the Divider results, once fully integrated into
the calculator, were not correct. The Adder/Subtractor and
Multiplier required no additional inputs besides standard AXI
inputs, namely the AXI clock and slave registers. The
Divider also required an enable bit for an embedded state
machine. This enable bit was never fully included into the
calculator resulting in incorrect results.

Figure 14: Implemented Division results

The end goal for this project was to input data from

an external source and read the result. For this the Vivado
SDK was used. A basic C program was used that wrote data
to the slave registers and read the result. In testing, the SDK
performed the same as the test bench. It was discovered in the
SDK tests; however, that if the divider component was run
twice in a row, the second set of results would be as expected.

V. CONCLUSIONS

The main take away from this project was to show just
one purpose of using Dual Fixed-Point numbers in an
electrical engineering application. We demonstrated a
calculator capable of four different basic arithmetic
functions. We used the Dual Fixed-Point format of [16 8 4],
however since we designed the project components as
generic, this could be implemented with any format.

We were also able to demonstrate the advantages
that dual fixed-point has over floating point and fixed-point.
Being more resource efficient and having comparable
dynamic range to floating point. There are, however, some
potential opportunities for improvement to this project. One
example is the circuit doesn’t validate the inputs of the user.
Meaning, it doesn’t detect that the user actually inputted a
number in [16 8 4] dual fixed-point format. This would then
cause the result to be incorrect.

Another potential improvement would be handling
overflow. This circuit doesn’t detect and appropriately flag
an overflow so if two operands were inputted that resulted in
an overflow there would be incorrect results. The circuit also
only accepts two inputs at a time since it is an AXI Lite
interface. If there was a need to pipeline data and results, then
the AXI interface would need to be redesigned to a FIFO full
interface.

There were a variety of implementation issues
involved in this project. The first design had mode select
decided by switch inputs directly to the calculator IP. This
was a particularly pleasing implementation because it
showed how changes to the physical hardware would result
in different results when the software was run. Unfortunately
while integrating the adder/subtractor into the calculator it
forced one of the switch signals to become a generic clock.
Much time was spent trying to resolve this failure but in the
end the design was changed to take two additional data bits
to decide on the mode selection and scrap the switch inputs.
All was not lost; however, because this incorporated a second
slave register for the data read and overall this achieved the
same level of complexity.

One area of improvement would be in the overall
design of the multiplier. The multiplier was designed with an
approach best described as a C-programming approach. The
VHDL is written in a very linear fashion using components
as if they were functions. Processes are used to control the
flow of logic and maintain this systematically linear
approach. This is very different from the intention of VHDL.
Incorporating better component logic into the design and
eliminating some of the pseudo C implementation would
likely make the project much more efficient from a resource
perspective.

Overall, this project effectively demonstrates a
hardware and software implementation on an FPGA device
with hardware design based around using Dual Fixed-point
numbers and showing their potential use in everyday
engineering applications.

VI. REFERENCES

[1] Daniel Llamocca, “Unit 1 - Computer Arithmetic” in ECE-5736
Reconfigurable Computing

[2] Daniel Llamocca, “Unit 3 - Special Purpose Arithmetic Circuits and
Techniques” in ECE-5736 Reconfigurable Computing

