
Dynamic Partial Reconfigurable Calculator Module

List of Authors (Jeanne Beau, Zachary Martin)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: beau@oakland.edu, zmartin@oakland.edu
Abstract—This project levies a DPR calculator design with a
serial monitor based user interface to achieve an arithmetic
logic unit with extensive scalability at a consistent size.

I. INTRODUCTION

The Dynamic Partial Reconfigurable Calculator Module
(DPRCM) is a DPR based calculator which is
dynamically modified to fit a given operation assigned
by the user. This system integrates a UART serial port
terminal to allow the user to pass in mathematical
operations and observe their results. The purpose of this
project is to illustrate the potential savings in space
offered by a DPR design by utilizing the significant
scalability of operators while maintaining the small size
offered by the FPGA. Other ALU units, on the other
hand, require an exponential increase in size with each
supported operation as well as increased measures for
thermal regulation. Here, we’ll explore this approach of
a reconfigurable fixed-size ALU with four operators and
conclude the experiment with main takeaways and how
they relate to some topics covered in class. We will levy
the lectures given on dynamic reconfigurable hardware
design to complete this project.

II. METHODOLOGY

The design plan for this system will integrate distinct
software and hardware tasks.

A. Software
The software logic design is shown in the figure below.
At the startup of the application, a main menu will be
displayed via UART, which will include a general
opening message, a list of supported operators, and a
prompt for the user to enter a valid operator. The system
will check if the input is valid, then prompt for the first
number. The user will then be requested to enter a
decimal number as the first operand. This process will be
repeated for the second operand. The operator, first
operand, and second operand will then be parsed and
transferred to the hardware accordingly. The system will
determine how the ALU will be reconfigured to meet the
requirements of the selected operation. It will then wait
for the output (either via polling or predetermined
delay), read the data, and display the result back on the
terminal. Once completed, the system will return to the
main menu and await the next operation.

Figure 2A: Software Control Logic of UART interface

The following listing illustrates the pseudo code of the
systems state machine:

infinite loop
switch app state

case operator select:
Display_request_for_operator();

stream_terminal_input();

if input is valid operator then
store operator in variable

else
app state = operator state

end if

case input one state:
Display_request_for_input_1();

stream_terminal_input();

if input is valid number then
if input is > 32 bit then

app state = input one state
display error input too large

else if input is > 16 bit
set bus size variable to 32 bit

else
set bus size variable to 16 bit

end if

store input one in variable
else

app state = input one state
display error invalid number

case input two state:
Display_request_for_input_2();

stream_terminal_input();

if input is valid number then
if input is > 32 bit then

app state = input two state

display error input too large
else if input is > 16 bit

set bus size variable to 32 bit
else

set bus size variable to 16 bit
end if
store input two in variable

else
app state = input two state
display error invalid number

case reconfigure hardware:
if operator is addition

if bus size is 32 bit
upload partial bitstream of 32
bit bus addition configuration

else
upload partial bitstream of 16
bit bus addition configuration

end if
else if operator is subtraction

if bus size is 32 bit
upload partial bitstream of 32
bit bus subtraction configuration

else
upload partial bitstream of 16
bit bus subtraction configuration

end if
else if operator is multiplication

if bus size is 32 bit
upload partial bitstream of 32
bit bus multiplication configuration

else
upload partial bitstream of 16
bit bus multiplication configuration

end if
else if operator is division

if bus size is 32 bit
upload partial bitstream of 32
bit bus division configuration

else
upload partial bitstream of 16
bit bus division configuration

end if
end if

case write data:
write input one
wait 15ms
write input two
wait 15 ms

case read data:
if bus size is 32 bit

high 32 bit of 64 bit term_output_64 is
first AXI read

low 32 bit of 64 bit term_output_64 is
second AXI read

display 64 bit term_output_64 on terminal
else

the high 16 bits of the 32 bit term_output_32
is the first AXI read

the low 16 bits of the 32 bit term_output_32
is the second AXI read

display 32 bit term_output_32 on terminal
end if

app state = operator select

Listing 2A: Software Control Logic in Pseudocode

This state machine starts with a main menu which
displays the name of the application as well as some
additional information. The next state waits for the user
to enter a valid operator to perform from a list of
addition ‘+’, subtraction ‘-’, multiplication ‘*’ and
division ‘/’. If an invalid operator is entered, an error is
displayed and the state restarts. Next, the system scans
for the user to enter the first operand. If the input is too
large an error is returned and the state restarts.
Otherwise, if the input is valid then the number is stored
into a variable called input_1 and the system moves to
the next state. This state will scan for the second
operand, similar to the previous state. If successful, the
state machine transitions to the processing state. The PS

loads the appropriate partial bitstream onto the RP and
then passes the inputs through the AXI-Lite interface.
Then the software reads two 32 bit values from the
hardware, reconfigures the data into an easily readable
format, and outputs the final result through the uart
terminal. Some additional processing is done to format
the result into a more readable configuration for division
such that the quotient ‘q’ and the remainder ‘r’ are
clearly labeled. Once the output is transmitted, the
system transitions back to the main menu.

B. Hardware
A high-level overview of the system’s hardware design
is illustrated in the figure below.

Figure 2B: High-Level Overview of Design Architecture
This hardware uses an AXI-Lite peripheral to interface
with the software and receive two 32-bit numbers and a
given mathematical operation, which will be
reconfigured according to the operator. The processed
output is stored in registers to be read via the AXI-Lite
interface. The reconfigurable partition will contain an
ALU unit which will be partially reconfigured as one of
four operations (add, subtract, multiply, divide),
emphasized in the figure below.

Figure 2C: Reconfigurable Operation Modules

The datapath of the system using the AXI-Lite interface
is depicted in the following figure. This architecture will
only need 4 slave registers (00 to 11). Registers 00 and
01 will load two 32 bit inputs into the reconfigurable
unit, and the 64 bit result will be multiplexed into
registers 10 and 11.

Figure 2D: PL Datapath with AXI-Lite Interface

To keep the reconfigurable hardware simple, the system
will always write two 32 bit values for the inputs (one
for input one and again for input two) and will read two
32 bit values of the 64 bit result (the most significant 32
bits of the result being stored in the first read, and the
lowest 32 bits of the result in the second).

This architecture will also include a finite state machine
(next figure) to wait for the inputs as well as the
completed operation (done signal) from the ALU. This
will be driven by the slv_reg_wren signal to clear the
previous result flip flop. It will then wait for this signal a
second time, and then the done signal to make the data
available to be read from the S_AXI_RDATA bus.

Figure 2E: FSM of ALU AXI-Lite Interface

III. EXPERIMENTAL SETUP

The experiment will begin with creating the necessary
hardware components and simulating the circuit and the
IP to be created. Then software will then test the
functionality of the AXI-Lite interface to validate
successful communication with the hardware. After
which, the static and reconfigurable portions will be
defined and the filesystem will be set up to ultimately
generate the full and partial bitstreams. Lastly, the
software portion is written to implement the logic
described in Listing 2A.

A. Hardware Generation
The ALU component is created as a file with a generic
single character select to generate one four operations.
This component is simulated with a testbench in Vivado
and each operation performed is tested with various
operand inputs. Once the behavior of the circuit is
confirmed to be correct, the peripheral is then built and
simulated to verify that the circuit functioned through the
AXI-Lite bus. The IP is then packaged and a block
design is created with the Zynq PS and the custom
peripheral. After the VHDL wrapper is generated and the
bitstream is exported, a test software program is written
to confirm the functionality of the hardware through the
AXI-Lite interface. This process allows us to verify that
the hardware portion works as expected. The final
portion of the hardware setup is to define the static and
dynamic portion of the system, as well as recreate a file
system similar to the one demonstrated in Laboratory 5.
Each of the 4 reconfigurable modules (RMs) source
directories are populated with the modified
reconfigurable partitions exposed accordingly.
Additionally, the folders for implementation and
synthesis are created. Once the hierarchy for the file
system is established, the TCL script will be able to
synthesize each of the RMs.. After synthesis, the
floorplan is drawn and an appropriate allocation is
determined. The floorplan will eventually be configured
appropriately and the modules will each be implemented
on to the design. The full and partial bitstreams will be
generated (as well as the swapped-byte bin files) and
will be made available on the SD to be read in by the
Zybo board for DPR.

B. Software Implementation
The first portion of the software implementation is the
memory allocation for the partial bitstreams. The code
for this memory allocation, and the functions involved
with loading the partial bitstreams, was taken from the
example code provided by the Dynamic Partial
Reconfiguration – PS+PL tutorial [3]. Here, the partial
bitstreams are loaded from SD memory into RAM to be
called by the PS to reconfigure the reconfigurable
partition (RP) as explained in the “Using SD Cards”
tutorial [2]. This requires that the board support

packages include xilffs with the option of use_strfunc
enabled for SD card usage. Since the partial bitstreams
are stored in RAM, sufficient stack and heap sizes need
to be set using the linker generation tool. For this system,
a 10MB stack size is assigned. With the memory
allocation completed, the software enters the state
machine.

The software will go through a series of sanity checks to
validate and apply appropriate modifications. The state
machine was run with various inputs to ensure that each
error check, such as inappropriate characters and values
greater than 32 bit numbers, are appropriately triggered
and displayed. In addition, several operations are tested
to validate the output of the system. These numbers
ranged from small 16 bit values to the maximum allowed
values for 32 bit operations in both positive and negative
numbers. The results will be verified using Microsoft's
programmer calculator application.

IV. RESULTS

A. Simulation
Two testbenches were used for behavioral hardware
simulation. The figure below shows the testbench result
of the standalone ALU component doing a division
operation on Xin and Yin, shown in decimal. The result
shows the 64 bit Zout with the most significant 32 bits
representing the quotient and the least significant 32 bits
being the remainder, displayed in hex.

Figure 4A: ALU Component Simulation (Division)

The next figure is the simulated result of the custom
AXI-Lite peripheral containing the ALU with the
addition operation. We can see that the write data is -1
and -1, and -2 in 64 bits is then available on the read data
bus. These two simulations allowed us to confirm the
functionality performed as expected.

Figure 4B: ALU AXI-Lite Peripheral Simulation (Addition)

B. Implementation and Floorplanning
After synthesizing all four of our reconfigurable modules
in the Vivado TCL Shell, the checkpoint for the divider
module was read in first, as it was thought to be the
module that would be largest in size (this was true). The
floorplan was generated and the process continued for
each module until we reached the multiplication
configuration. When attempting to place the design, it
was found that the necessary cells, DSP48, needed for
this operation, were missing. Thus, the floorplan step
had to be redrawn. The second time, we started with the
multiplication RM and regenerated the floorplan
constraints, making sure to include the DSP 48 cells.
However, during this iteration, we found that the size of
the floor plan drawn was too small for the divisor
operator. Thus, we needed to create the floorplan
constraints a third time. This is of course a big step with
creating partial reconfigurations as we observed how
each RM may need varied specialized cells or space.
This may point to a limitation of a single reconfigurable
partition. In this case, the amount of space required for
addition, subtraction, and multiplication was
significantly less than division. In addition, the
multiplication block needed a specific collection of cells
in order to perform its function. Our floor plan as a result
encompassed a very large partition that would only be
needed for one configuration, as well as block off
specialized cells that would also only be needed for one
configuration. This poses a question as to how design
decisions are made in a dynamic partially reconfigurable
system where circuits have significantly varied hardware
specifications. In this case, we may not actually benefit
the same way compared to if the modules needed similar
hardware resources. The floorplan was eventually
confirmed to be appropriate when each of the
configurations were implemented successfully.

C. Software Terminal Output
The following listing was taken from the UART serial
terminal output through several operation tests:

ECE5736 PARTIAL RECONFIGURABLE CALCULATOR MODULE
JEANNE BEAU, ZACHARY MARTIN
06/22/21

ENTER OPERATOR ('+' , '-' , '*' , '/')
>+
ENTER FIRST OPERAND
>1234
ENTER SECOND OPERAND
>5678

1234+5678 = 6912

ENTER OPERATOR ('+' , '-' , '*' , '/')
>+
ENTER FIRST OPERAND
>-600000
ENTER SECOND OPERAND
>-567891234

-600000+-567891234 = -568491234

ENTER OPERATOR ('+' , '-' , '*' , '/')
>-

ENTER FIRST OPERAND
>12345
ENTER SECOND OPERAND
>678910

12345-678910 = -666565

ENTER OPERATOR ('+' , '-' , '*' , '/')
>-
ENTER FIRST OPERAND
>-12345
ENTER SECOND OPERAND
>-6789

-12345--6789 = -5556

ENTER OPERATOR ('+' , '-' , '*' , '/')
>*
ENTER FIRST OPERAND
>-1234
ENTER SECOND OPERAND
>-56789

-1234*-56789 = 70077626

ENTER OPERATOR ('+' , '-' , '*' , '/')
>*
ENTER FIRST OPERAND
>1234
ENTER SECOND OPERAND
>5678

1234*5678 = 7006652

ENTER OPERATOR ('+' , '-' , '*' , '/')
>/
ENTER FIRST OPERAND
>3
ENTER SECOND OPERAND
>2

3/2 = q:1 r:1

ENTER OPERATOR ('+' , '-' , '*' , '/')
>/
ENTER FIRST OPERAND
>4
ENTER SECOND OPERAND
>2

4/2 = q:2 r:0

Listing 4A: UART Terminal Output

During the final validation of the system, the divider was
observed to have inconsistent results. The first solution
to this problem was to increase the delay between write
and read operations through the AXI-Lite interface to the
hardware. This had mixed results, allowing for more
consistent and accurate outcomes for very small
operands but still inconsistent outcomes for larger
operands. Additionally, the scale to this delay was not
obvious but exponential. Further exploration revealed
that the division operator would function correctly every
second call. With this observation, the data write
operation to the hardware was modified to call twice
only for division. The result was a consistent and
accurate output for various operand combinations. Some
speculation has been made as to the cause of this issue.
First being a large propagation delay in the generic
divider which is why the increase in delay time had some
beneficial effect. Second is that the divider may require
additional cycles in the ALU state machine to allow for
the data to complete the process. Future work could
improve this with a more synchronous and sequential
approach, rather than the current combinational design
implemented by the library. In addition the component
would drive the done signal such that the output register
would only store the completed value. This would ensure
that we would not need to predict how many clock

cycles the procedure would take and assert when the data
is ready to be read.

V. CONCLUSIONS

In summary, we were able to create a dynamic partially
reconfigurable system by way of an on-the-fly adjustable
arithmetic logic unit prompted by a software interface
via UART user input. The hardware for the operator
component as well as the AXI4-Lite was generated and
simulated, then tested via software. The peripheral was
defined into dynamic and static portions and the
bitstreams were generated to be used for DPR. We were
able to further expand the software to accept user input
via UART and create our intended calculator application
defined in Section II. The main design challenges were
generating an appropriate floorplan constraint that would
fit the needs of each module, as each configuration had
different requirements for cell types and size. This led to
a discussion about design choices and tradeoffs with
what types of designs should include dynamically
partially reconfigurable hardware within a single
module. The final challenge was discovering our
software application resulted in inconsistent results with
the division operator. Through simulation, we were able
to rule out the possibility that the component itself was
behaviorally malfunctioning and we instead
experimented with the software. The resulting work
around for this obstacle ultimately pointed to the
possibility that the number of clock cycles needed for the
division was unpredictable, and was usually more than
we allowed before reading the result. This is related to
the topic discussed in class regarding timing constraints
and the relationship between clock cycles and operations
per cycle. Further improvements could be made to the
hardware to include a more sophisticated synchronous
division design, where the done signal would be asserted
by the divider and number of clock cycles would not
have to be derived in any way. As a result of this
experiment, we were introduced to some key insights
into dynamic partial reconfigurable systems as well as a
unique experience with development on a programmable
system on chip.

VI. REFERENCES

[1] Llamocca, D. (n.d.). Tutorial: Embedded System Design for
ZynqTM SoC, “Custom Peripheral for the AXI4-Lite Interface”.
Rochester; ELECTRICAL AND COMPUTER ENGINEERING
DEPARTMENT, OAKLAND UNIVERSITY.

[2] Llamocca, D. (n.d.). Tutorial: Embedded System Design for
ZynqTM SoC, “Using SD Card” Rochester; ELECTRICAL AND
COMPUTER ENGINEERING DEPARTMENT, OAKLAND
UNIVERSITY.

[3] Llamocca, D. (n.d.). Tutorial: Embedded System Design for
ZynqTM SoC , “Dynamic Partial Reconfiguration – PS+PL”.
Rochester; ELECTRICAL AND COMPUTER ENGINEERING
DEPARTMENT, OAKLAND UNIVERSITY.

