
Reconfigurable,

Fixed-Point

Processor in VHDL
DAVID STERN AND BRANDON BUSUTTIL

Overview

 Introduction

 Methodology

 Hardware

 Software

 Demonstration

 Conclusion

Introduction

 16-bit fixed point processor with dynamically reconfigurable ALU

 Partial reconfiguration of an ALU allows your design to implement

more ALU functions in a fixed amount of space

 Our design will consist of two configurations, referred to as BASIC

and ADVANCED

 Basic mode will allow simple operations

 Advanced mode will allow more complex operations

Methodology - Hardware
 The entire processor consists of a mux, four

registers, ALU, and the controller

 Instructions are sent to the controller and
decoded

 ALU can be reconfigured

 Four functions per configuration

Hardware Architecture
 The processor IP core is

wrapped inside an AXI Full

interface.

 Data flow to the IP core is

controlled through an external
FSM which utilizes an input FIFO

and output FIFO

Opcodes

Config Function Opcode Comment

Advanced & Basic Load Reg X 0x0100xxxx Lower 16 data

Advanced & Basic Load Reg Y 0x02000000 X => Y

Advanced & Basic Load Reg Z 0x030xxxxx Cordic only. Bit 16 denotes rotational or
vectoring mode.

Advanced & Basic Reset RM 0xAAAA7777 Reset ALU after DPR

Advanced & Basic End Program 0xFFFFFFFF When processed by the PS, this will exit the loop and

terminate the program

Basic x + y 0xA0000000

Basic x – y 0xB0000000

Basic x * y 0xC0000000

Basic x / y 0xD0000000

Advanced cordic (x, y, z) 0xA1000000 1 Indicates the ALU must be in advanced
mode

Advanced Shift Reg 1 0xB1000000

Advanced Shift Reg 2 0xC1000000

Advanced N/A N/A

Methodology - Software
 Primary goal of the software is exercising the hardware to prove out the design

 Software will control data flow to and from the processor IP core

 Upon initializing:

 The software will read two .bin files from an external SD card and load them into DDR

memory

 The software will load a predefined set of HW specific instructions into an array

structure

 The array structure will be looped until the “End of Program” opcode is reached.

 Software routine keeps track of current ALU configuration. Performs DPR if
necessary.

Software Architecture

Example Program
 0x01000001: Load register 1 with 1

 0x02000000: Duplicate register 1 into register 2

 0x01000005: Load register 1 with 5

 0xB0000000: Perform ALU operation Shift left X by Y

 0x02000000: Duplicate register 1 into register 2

 0x01000035: load register 1 with 0x0035

 0xC0000000: Perform ALU operation X * Y

 0x02000000: Duplicate register 1 into register 2

 0x01001960: Load register 1 with 0x1960

 0xA0000000: Perform ALU operation X + Y

 0xAAAA7777: Reset ALU after reconfiguration

 0x02000000: Duplicate register 1 into register 2

 0x0100ECCC: Load register 1 with 0xECCC

 0x03000000: Load register 3 with 0

 0xA1000000: Cordic

 0xFFFFFFFF: End of program

cordic(x, y, z)

x = .3 or 0x02000

y = -.5 or 0xECCC

z = 0 or 0x0000

Demonstration

Conclusion
 Primary goal of the software is exercising the hardware to prove out the design

 Operations implemented worked over AXI-Full and the partial bit streams

 Microprocessor design is able to handle any equation with set of operations

 Further development of functions would increase usability without needing more

hardware space

 pblock placement is annoyingly difficult

