
Reconfigurable, Fixed-Point Processor in VHDL

David Stern, Brandon Busuttil

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

destern@oakland.edu, bbusuttil@oakland.edu

I. INTRODUCTION

Partial reconfiguration of hardware presents many
benefits such as the following: shorter reconfiguration times,
increased system performance, the ability to change
hardware, and more [1]. These benefits are important for
applications that have limited resources such as hardware
space or available power. This paper will outline a hardware
implementation that demonstrates some of these benefits.
The functionality of the hardware is a 16-bit, fixed-point
processor. The processor’s ALU will be partially
reconfigurable so that it is capable of up to four instructions
at a time. Only being capable of a small handful of
instructions at a time, hardware space for the processor will
be limited. Instructions and data will be received and sent
between the processor and software using an AXI-Full
interface.

II. METHODOLOGY

Hardware design and implementation were done using
Vivado 2018.2. The software used for programming the
FPGA and the on-chip processor was SDK 2018.2.

A. Hardware Implementation

The most important design components for the hardware
implementation is the processor (Figure 1) and controller
components. Combined, these components handle incoming
data by performing different functions and then outputting
results. This processor component will be wrapped with an
AXI interface and packaged as an IP core.

Depending on the opcodes received, the controller

component will control the data path in the processor
component. The design of the processor component allows
for a wide variety of functions to be implemented. The
functions that were implemented can be seen in Table 1. For
a given function to be used, the ALU must be set to the
configuration that has the given function included. The ALU
will be the reconfigurable module in the design. It will have
two configurations, ADVANCED and BASIC, denoted A
and B. In the BASIC configuration mode, the operations are
rather simple such as A + B, A – B, A * B, or A / B, and in
ADVANCED configuration the ALU will except the same
OPCODES but perform different operations such as Cordic
and shift operations.

Figure 1: Block diagram of the processor
component. The block shaded green is partially

reconfigurable.

Table 1: Instructions implemented in the processor

component.

After the controller and processor are packaged together

in a top-level file, an IP will be generated. This IP will be
added to a block design that utilizes an AXI-Full interface.

 The ALU portion of the processor will contain a
special generic string parameter to indicate what type of
circuit it needs to generate. Two implementations will be
made, and a check will be done on the string parameter to
determine which configuration to generate. When developing
a system with partial reconfiguration, it is important to
synthesize a static design which contains a black box of the
reconfigurable partition. For our design, it will be imperative
that when the static design is generated it is generated with
the ALU in ADVANCED configuration. This is because the
ADVANCED mode contains a much larger circuit to
implement the Cordic functionality.

Config Function Opcode Comment

Advanced
& Basic

Load Reg
X

0x0100xxxx Lower 16 data

Advanced
& Basic

Load Reg
Y

0x02000000 X => Y

Advanced
& Basic

Load Reg
Z

0x030xxxxx Cordic only.
Bit 16 denotes
rotational or
vectoring
mode.

Advanced
& Basic

Reset RM 0xAAAA7777 Reset ALU
after DPR

Advanced
& Basic

End
program

0xFFFFFFFF Command
indicating end
of program

Basic x + y 0xA0000000

Basic x – y 0xB0000000

Basic x / y 0xC0000000

Basic x * y 0xD0000000

Advanced cordic (x,
y, z)

0xA1000000

Advanced Shift Reg
1

0xB0000000

Advanced Shift Reg
2

0xC0000000

Advanced N/A N/A

Figure 2: Block diagram of the AXI Full IP Core

B. Software Implementation

The primary goal of the software implementation will be
exercising the hardware and prove out the design. Therefore,
the software will be a simple flow of data exchanges
between the PL and PS that execute the various operations
on the processor. The flow of data exchanges will be pre-
defined in the form of a manually generated HW specific
program loaded into program memory.

Input data and instructions will be sent to the FPGA. 16-

bit values will be sent to the processor one at a time. The first
value to expect would be loading register one with some
data. Afterwards the instructions are sent in an order that
makes sense. Instructions can be sent from the software
either all at once or one at a time because they will be

buffered into an input FIFO on the FPGA. The controller
will grab instructions and data from the input FIFO when it
is ready for the next instruction. the output of the circuit is
also buffered into an output FIFO which is read over the AXI
bus. It is important that the software is conscious of how
many and how fast it writes instructions to the processor as
to not overload the input FIFO. The software also must be
aware of when it should expect data. For example, after
instructing the FPGA to perform an ALU computation, the
software must read the data from the output FIFO over AXI
bus as to not let the output FIFO overload with data.

The software will keep track of the current configuration

of the ALU in hardware. On powerup the system will be
configured for BASIC mode. Before sending an instruction
to the processor that includes using the ALU, there is a check
to make sure the function is currently in the ALU. If a
function is not currently in the ALU, the software will
initiate a dynamic partial reconfiguration (DPR) of the ALU
to the correct mode that has the desired operation. Upon
initialization of the software, two bit streams will be loaded
into DDR memory from an external SD card. These two bit
streams will be the ADVANCED and BASIC configurations

of the ALU. Various FFS and external C libraries will be
leveraged to read the data from the SD card into DDR
memory. Figure 2 shows an architectural view of the
software design.

Figure 2: Software Architectural Design

III. EXPERIMENTAL SETUP

Experimental tests will be performed iteratively
throughout the development phase of the project.

The first milestone will be to test and verify our processor

IP core. Using a Vivado Test Bench we can simulate the
necessary data and signals to the processor and verify the
output.

The next milestone will be to test and verify our AXI IP

core using another Vivado Test Bench. After our processor
core has been imported into a much larger design which
implements an AXI Full interface, we will need to verify that
the data can be written and retrieved properly.

After our AXI Full IP core has been validated and we are

confident the hardware is implemented without any bugs, the
next step will be to export the bit stream and develop an
SDK project to test the AXI IP core on the target hardware.
Both ADVANCED and BASIC configurations will be
verified here before moving onto partial reconfiguration.

Finally, the setup that will be used to verify the proper

functionality of the reconfigurable FP processor will consist
of a Zybo board, USB cable, and laptop computer running
Xilinx’s SDK 2018.2 integrated development environment.
Using this setup, we will be able to read and write over the
AXI stream and control the configuration of the hardware.
The SDK will be configured properly to support dynamic
reconfiguration of the FPGA. A C program will be
developed that exercises the full functionality of our design.
To verify a specific functionality, the C program will write
known inputs to the processor and we will expect to receive
the proper outputs over the AXI bus. Outputs will be viewed
in debug mode and/or printed to the console window of the
SDK.

IV. RESULTS

List all results you obtained, For example: audiovisual
results, results in an oscilloscope, etc. You can include
pictures and/or links to video of your project functioning.

Include some discussion of your findings and relate them
to the topic learnt in class. Were the results what you
expected? In what cases are the results explainable, and in
what cases unexplainable (if any)?

Figure 3: AXI Testing Results, s00_axi_wdata

Figure 4: AXI Testing Results, s00_axi_rdata

CONCLUSIONS

Designing and implementing this 16-bit fixed point
reconfigurable processor was a nice challenge for the team
that really exercised some of the concepts learned throughout
the semester, including some of the concepts we did not have
time to implement in lab such as a hardware reset initiated
after DPR by the software. Designing a simple processor,
controller and data path, was something we felt moderately

confident in accomplishing and was an interesting

challenge for the team. Identifying and understanding our
reconfigurable partition was one of the better take-aways
from this project, which was different from working on the
labs, where the reconfigurable partitions were already
identified. In its simplest form, the processor is a great
example of how partial reconfiguration can be leveraged on
an embedded system where PL fabric space is very limited.
Constrained by the size of your circuit, you might not have
enough room to implement a generic processor, so you
design a special purpose processor with a reconfigurable
ALU to cover all the operations you need.

REFERENCES

[1] Kao, Cindy. "Benefits of partial reconfiguration." Xcell journal55
(2005): 65-67.J. Clerk Maxwell, A Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

