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Abstract—This project demonstrates the use of Dynamic 

Partial Reconfiguration in the Xilinx Zynq 7020 for image 

processing. The PCAP interface is used to selectively load two 

image processing modules – color space conversion (rgb2gray) 

or edge detection (2D convolution). 

I. INTRODUCTION 

Complex image processing algorithms are often 
resource-intensive when embedded in FPGAs or 
programmable logic. As a result, multiple algorithms may 
not fit in the resources available in a given device. If such 
algorithms don’t need to reside in the PL at the same time, 
they can be selectively swapped in and out. This project 
demonstrates the Dynamic Partial Reconfiguration (DPR) 
methodology provided by Xilinx for the Zynq SOCs. These 
SOCs provide a PCAP interface to reconfigure portions of 
the Zynq PL. This interface can be controlled from the PS. 

II. SYSTEM OVERVIEW 

The basic block diagram of the project is shown below. 
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The project outline is as follows: 
1. An input image of size 256x256 and format RGB888 

is stored in the SD card. The PS reads it from the SD 
card into the DDR using the xilffs library.  

2. The image data is transferred by the PS from DDR 
to the PL over an AXI-full slave interface. This 
interface is also used to transfer the image from the 
PL to the DDR. 

3. The input sync generator FSM generates the frame 
valid, line valid and data valid sync signals based on 
the iFIFO status signals. 

4. The output FSM also controls the data being written 
into the oFIFO. 

5. The image processing reconfigurable partition 
contains two reconfigurable modules. Each of these 
modules implement an image processing algorithm. 
Both algorithms use the same input interface and the 
same output interface. Hence the control FSM does 
not need to be in the RP. 

III. DYNAMIC PARTIAL RECONFIGURATION IN XILINX 

ZYNQ 

FPGA technology provides the flexibility of on-site 

programming and re-programming without going through 

re-fabrication with a modified design. Partial 

Reconfiguration (PR) takes this flexibility one step further, 

allowing the modification of an operating FPGA design by 

loading a partial configuration file, usually a partial BIT file. 

After a full BIT file configures the FPGA, partial BIT files 

can be downloaded to modify reconfigurable regions in the 

FPGA without compromising the integrity of the 

applications running on those parts of the device that are not 

being reconfigured. 

The Device Configuration interface (DevC) provides an 

AXI-PCAP bridge for interfacing the PL configuration 

logic. The figure below illustrates the device configuration 

flow. 

 
 

The AXI-PCAP bridge converts 32-bit AXI formatted 

data to the 32-bit PCAP protocol and vice versa. A transmit 



and receive FIFO buffer data between the AXI and the 

PCAP interface. A DMA engine moves data between the 

FIFOs and a memory device, typically the OCM, the DDR 

memory, or one of the peripheral memories. The 32-bit 

PCAP interface is clocked at 100 MHz and supports 400 

MB/s download throughput for non-secure PL configuration 

and 100 MB/s for secure PL configuration where data is 

sent only every 4th clock cycle. To transfer data across the 

PCAP interface a DevC driver function needs to be called. 

The driver will take care of setting the correct PCAP mode 

and initiating the DMA transfer. The function call will only 

return after both the AXI and the PCAP transfers are 

complete.  

IV. IMAGE PROCESSING IP OVERVIEW 

The main image processing capability is provided by the 
image processing IP. A detailed view of this IP is shown in 
the figure below. 

  
The IP interfaces to the PS through an AXI4-Full Slave 

interface. It decodes the AXI4 transactions and writes 
incoming data into an input FIFO and provides outgoing data 
from an output FIFO. Both FIFOs are 512 deep and 32-bits 
wide.  

The image processing algorithms are contained in the 
reconfigurable partition (RP). This partition has two 
reconfigurable modules (RM). The two algorithms being 
used are RGB to grayscale conversion and 2D convolution 
(used as edge detection). Both algorithms use the same input 
interface (24-bit RGB, frame valid (FV), line valid (LV) and 
data valid (DV)) and the same output interface (8-bit 
grayscale, frame valid (FV), line valid (LV) and data valid 
(DV)). 

An input sync generator FSM reads data from the input 
FIFO and provides it to the RM. It monitors the almost 
empty flag from the input FIFO. The threshold is 256. This 
means that the almost empty flag de-asserts when it has at 
least 256 words (or a line of the input image) in the FIFO. 
When this flag de-asserts, the FSM generates sync signals 
FV, LV and DV for one line (or 256 pixels). The 24-bit pixel 
data is also sent along with these control signals to the RM. 
This process continues until all the lines in the image are sent 
to the RM. The input FSM is shown below. 
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The output FSM writes data to the output FIFO based on 

the sync signals from the RM. Four 8-bit grayscale pixels are 
combined to create a 32-bit word which is written into the 
FIFO. The flag to latch the 4 pixels and the flag to write the 
word into the output FIFO is also created by the output FSM. 
The FSM monitors the almost full flag from the output FIFO. 
The threshold is 64 (since one line is 64 words on the 
output). When this flag deasserts, the FSM writes the data 
words into the FIFO based on signals FV, LV and DV for 
one line. This process continues until all the lines are written 
to the output FIFO. The output FSM is shown in detail 
below. 
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V. RECONFIGURABLE MODULE 1: RGB2GRAY 

The RGB to grayscale conversion is done using the 
formula: 

Y=0.21*R + 0.72*G + 0.07*B 
Since the calculation is done in fixed-point format U0.8, 

the coefficients are converted as follows:  
0.21 is expressed as 0.00110101 = X"35" 
0.72 is expressed as 0.10111000 = X"B8" 
0.07 is expressed as 0.00010001 = X"11" 
 
After the addition, the fractional part is ignored by 

dropping the lower 8 bits. The module has a latency of 3 
clock cycles. 

   

VI. RECONFIGURABLE MODULE 2: EDGE DETECTION 

The edge detection module is a 2D-convolution with the 

kernel  
-1 -1 -1 
-1  8 -1 
-1 -1 -1 
 

The 2D convolution process on an image is basically the 
process of adding each element of the image to its local 
neighbors, weighted by the kernel. The kernel is overlaid on 
top of the image, the center of the kernel being on the pixel 
of interest. Each element of the kernel is multiplied with the 
corresponding pixel. All these are summed together to get a 
final value for the pixel of interest. An example is shown 
below.  

 
The value for pixel (2,1) is calculated as: 

210 = 0*0 + 105*-1 + 102*0 + 0*-1 + 103*5 + 99*-1 + 0*0 

+ 101*-1 + 98*0 

For our use case, the image size is 256x256. The pixels 

on the border (row 0 and 255 and pixel 0 and 255 in each 

row) do not have all the required pixels to do the 

convolution. For these pixels, the output from the module is 

set to zero. 

Given the negative values in our kernel, it is possible that 

some pixels result in a negative value. In such a case, the 

value is converted to its absolute value. Since the input 

image has 3 channels, we get three edge results after the 

convolution is complete. The output of the RM needs to be 

8-bit grayscale so these three values are averaged to get one 

value. After the averaging step, in case the output exceeds 

255, it is saturated to 255. 

VII. IMAGE INPUT/OUTPUT PROCESS IN PS 

The PS transfers the image data from the SD card to 

DDR using the xilffs library. xilffs is a generic FAT 

file system that is primarily added for use with SD/eMMC 

driver.  

The input image is stored as the R channel followed by 

the G channel followed by the B channel, all in one binary 

file. The PS application combines the three channels 

together to get words with all three channels. 

The input image in our case is 256x256 RGB. The output 

image is 256x256 grayscale. The PS sends one line i.e. 256 

32-bit words at one time to the IP. For subsequent lines, it 

sends one line into the IP and reads one line i.e. 64 32-bit 

words out of the IP. This continues until all the lines are 

sent. At the end, the last line is read out to flush out the 

output FIFO. 

VIII. DYNAMIC PARTIAL RECONFIGURATION PROCESS ON 

THE PS 

The basic flow followed by the PS application is: 

1. Program the FPGA with the RGB2Gray bitstream. 

2. Send the image, run image processing, retrieve the 

image, write to SD card. 

3. Transfer the edge detection bitstream to the PL. 

4. Reset the RP. 

5. Send the image, run image processing, retrieve the 

image, write to SD card. 

6. Transfer the RGB2Gray bitstream to the PL. 

7. Reset the RP. 

8. Send the image, run image processing, retrieve the 

image, write to SD card. 

 

The important thing to remember is to reset the RP after the 

partial bitstream has been transferred to the PL. This ensures 

that the input and output FIFOs are reset and the FSMs and 

RMs start from the idle state. This is done via a simple 

software command (we write the word 0xAA995577 onto 

address 101100).  

IX. RESULTS 

The dynamic partial reconfiguration process worked in 

principle and the application was able to swap the bitstreams 

in and out of the PL. The RP reset logic worked correctly 

and the results were evident with both RMs (RGB2Gray and 

Edge Detection).  

The hardware output of RGB2Gray before and after PR 

matched perfectly. It also closely matched the Matlab 

reference. The images are shown below. 



  
The hardware output of Edge Detection before and after 

PR matched each other perfectly. However, there is some 

problem with the overall Edge Detection design when the 

dynamic bitstream is created. The images are shown below 

to illustrate the problem. 

  
 

The following debug steps were taken to root cause this 

issue: 

1. The image processing IP was instantiated in a static 

design and the bitstream was flashed on to the 

FPGA. The PS application of the static design was 

used. This gave an image which closely matched the 

Matlab reference image. 

2. The image processing IP was instantiated in a static 

design and the bitstream was flashed on to the 

FPGA. The PS application of the dynamic design 

(with the PR reset) was used. This gave an image 

which closely matched the Matlab reference image.  

3. The image processing IP was used in the dynamic 

design and the edge detection configuration 

bitstream was flashed on to the FPGA. The PS 

application of the dynamic design was used. This 

resulted in the incorrect shifted image. The same 

result was obtained after partial reconfiguration was 

done.  

This means that the issue is with the Edge Detection in 

the DPR flow. It is also most likely on the output side as the 

input side is the same for color conversion. The next step 

would be to put an ILA instance in the IP and examine the 

signals related to the output FIFO.  

X. CONCLUSION 

The DPR methodology has its advantages but the 

following challenges need to be addressed: 

1. Floorplanning: The selected Pblock should 

accommodate elements required by all RMs in the 

least amount of space. 

2. Interface definition: The interface should be common 

between the different RMs in a given RP. 

3. Proper reset procedure should be followed to ensure 

the RP starts from an idle state 

4. Due to the TCL flow that is used to set up the 

dynamic design, the ability to include ILA cores in 

the design is hampered. Care should be taken to 

bring out relevant signals from the IP into the block 

design so they can be viewed in the hardware. 
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