
Powering (𝑥𝑦) architecture using hyperbolic CORDIC

 Abdulraheem Aljarrah, Karam Abughalieh
Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: aaljarrah@oakland.edu, abughalieh@oakland.edu

Abstract— This work presents FPGA architecture to calculate

power operation based on hyperbolic CORDIC floating point

format. The system is implemented on Zynq-7000 ARM/FPGA

SoC Development Board. The system is implemented using

IEEE-754 standard single precision computations. An IP is

created and interfaced to Zybo board ARM processor via AXI-

FULL interface. Simulation results and real implementation

experiment are conducted with successful convergence to

expected values.

I. INTRODUCTION

A power is an exponent to which a given quantity is raised.
It involves two numbers, the base x and the exponent y and its
written as 𝑥𝑦. Powering is broadly used in wide rang of fields
like economics, biology, chemistry, physics, and computer
science, with applications such as compound interest,
population growth, chemical reaction kinetics, wave behavior,
and public-key cryptography.

The high cost of powering computation in addition to
showing our deep understanding of problem solving and
ability to design embedded systems design using FPGA were
the motivations behind this project.

The rest of the papers is organized as follows, single
precision floating point number system is introduced in
sections 2, the expanded hyperbolic CORDIC is explained in
section 3, Section 4 of this report explains the methodology
adopted in order to implement and complete this project. In
sections 4 and 5 the experimental setup and result are
discussed and after that the paper is concluded.

II. SINGLE PRECISION FLOATING POINT NUMBER

SYSTEM

Single-precision binary floating-point is used due to its

wider range over fixed point compared to the same bit-width.

It’s an IEEE standard arithmetic that requires 32-bit word as

in Figure 1 [1], with 8 bit reserved as the exponential and 23

for the fraction part and the last bit for the sign. It is

represented as follows:

 𝑋 = ±1. 𝑓 𝑥𝑒 (1)

Where 𝑒 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 − 127, and 𝑓 is the Mantissa.

Equation (1) applies for Ordinary numbers where the range

of 𝑒 is [−𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1 + 2, 𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1 − 1.

Figure 1 IEEE 754 a 32 bit

When the Exponent field is a string of ones and the Mantissa

is zero, the represented number is ±∞, the sign is determined

based on the sign bit. Not a Number (NaN) case is when the

exponent is a string of ones and the Mantissa is not equal to

zero. Zero case is when the Exponent and Mantissa both

equal to zero.

 Equation (2) is used when the Exponent equal zero and

mantissa is anything. This case is known as Denormalized

Numbers.

 𝑋 = ±0. 𝑓 𝑥𝑒 (2)

III. EXPANDED HYPERBLIC CORDIC

Hyperbolic CORDIC is used to compute hyperbolic

functions in efficient and fast way. The problem is it has very

limited range [2] which can be extended using negative

iterations to produce what called Extended Hyperbolic

CORDIC [3]. Equations (3) and (4) show the algorithm

equations:

𝑖 ≤ 0 ∶ {

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑖𝑦𝑖(1 − 2
𝑖−2)

𝑦𝑖+1 = 𝑦𝑖 + 𝛿𝑖𝑥𝑖(1 − 2
𝑖−2)

𝑧𝑖+1 = 𝑧𝑖 − 𝛿𝑖𝜃𝑖 , 𝜃𝑖 = 𝑇𝑎𝑛ℎ
−1(1 − 2𝑖−2)

 (3)

𝑖 > 0 ∶ {

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑖𝑦𝑖2
−𝑖

𝑦𝑖+1 = 𝑦𝑖 + 𝛿𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 − 𝛿𝑖𝜃𝑖 , 𝜃𝑖 = 𝑇𝑎𝑛ℎ
−1(2−𝑖)

 (4)

Equation (3) shows the negative iteration for 𝑀+1
iterations (𝑖=−𝑀,…,−1,0). While 4 applied for 𝑁 iterations

with positive indices (𝑖=1,2,…,𝑁), To ensure the

convergence, iteration 4,13,40,…,𝑘,3𝑘+1 must be repeated.

In this work negative iteration M = 5, and positive iteration

N = 20 are chosen. The value of 𝛿𝑖 depends on the operation

mode:

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = −1 𝑖𝑓 𝑧𝑖 < 0; +1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = −1 𝑖𝑓 𝑥𝑖𝑦𝑖 ≥ 0; +1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

The 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 converges to the following values depending

on the operation mode:

https://en.wikipedia.org/wiki/Fixed-point_arithmetic

𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔 ∶ {

𝑥𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 + 𝑦0𝑠𝑖𝑛ℎ𝑧0)
𝑦𝑛 = 𝐴𝑛(𝑦0𝑐𝑜𝑠ℎ𝑧0 + 𝑥0𝑠𝑖𝑛ℎ𝑧0)

𝑧𝑛 = 0
 (6)

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔 ∶

{

 𝑥𝑛 = 𝐴𝑛√𝑥𝑖𝑛

2 + 𝑦𝑖𝑛
2

𝑦𝑛 = 0

𝑧𝑛 = 𝑧𝑖𝑛 + 𝑇𝑎𝑛ℎ
−1
𝑦𝑖𝑛
𝑥𝑖𝑛

 (7)

 Where

𝐴𝑛 = (∏ √1− (1 − 2𝑖−2)2)∏ √1− 2−2𝑖
𝑁

𝑖

0

−𝑀
 (8)

For the chosen M and N An = 5.038156454149566 * e-4

By using well chosen values for the input hyperbolic the

CORDIC could converge to coshx, sinhx and Tanh-1. The

architecture of the extended hyperbolic CORDIC structure is

presented in Figure 2, where it consists of two stages , one for

negative iterations and the second for positive iterations.

Each stage requires different finite state machine to control

counters, registers, multiplexers and the adders/subtractors

units , two floating point shifters, a look-up table and

multiplexers. The positive iteration stage requires five

floating point adder/subtractor while the positive stage

requires three.The used B in our project is 32 bits, 8 for the

exponent and 23 for fraction part providing a range of

[1.175×10−38 , 3.403×1038]. Large dynamic range is required

for the powering operation 𝑥𝑦 since 𝑒𝑥, ln 𝑥 could have huge

grow or decrease between their inputs and the output due to

the nature of these function.

Figure 2 Extended Hyperbolic CORDIC Engine

IV. METHODOLOGY

A. Powering xy Archticure

The design aims to compute 𝑥𝑦 , which could be achieved

by getting 𝑒𝑦𝑙𝑛𝑥 , here we have two functions the exponent
and the natural logarithm and both can be obtained from
hyperbolic functions as follows:

 𝑒𝑥 = cosh 𝑥 + 𝑠𝑖𝑛ℎ 𝑥 (9)

Which can be obtained by setting the input to the CORDIC

algorithm in the rotation mode to 𝑥0 = 𝑦0 =
1

𝐴𝑛
, 𝑧0 = 𝑥

To obtain

 𝑥𝑛 = cosh 𝑥 + 𝑠𝑖𝑛ℎ 𝑥 (10)

Equation 9 is 𝑒𝑥definition using hyperbolic functions, in

our case to get 𝑒𝑙𝑛𝑥 we set 𝑧0 = 𝑦𝑙𝑛𝑥 , but to dot that a prior
stage of CORDIC in vectoring mode is required to get the
natural logarithm using the math identity in (11)

tanh−1𝑥 =
1

2
ln
1 + 𝑥

1 − 𝑥

(11)

By setting 𝑥0 = 𝑥 + 1, 𝑦0 = 𝑥 − 1, 𝑧0 = 0, the output 𝑧𝑛

converges to
1

2
𝑙𝑛𝑥 , after that 𝑧𝑛 is multiplied by 2𝑦 to get

𝑧𝑛 = 𝑦𝑙𝑛𝑥.
The implementation of 𝑥𝑦using extended CORDIC is

illustrated Figure 3, a finite stat machine utilizes the Expanded
CORDIC twice as in the following steps:

1. Use vectoring mode to get 𝑧𝑛 = ln 𝑥/2 by loading

𝑥0 = 𝑥 + 1, 𝑦0 = 𝑥 − 1, 𝑧0 = 0, this is done using
the addsub unit on the top left corner and the
multiplexers at the input stage.

Figure 3 Powering xy implementation

2. To get 𝑦𝑙𝑛 𝑥 , first 𝑧𝑛 is multiplied by 2 using the
shifter , then the floating point multiplier is used to
multiply 2𝑧𝑛 output by y to get 𝑦𝑙𝑛 𝑥.
3. Use the current output of 𝑧𝑛 as the next input to the
CORDIC block in rotating mode. With 𝑥0 = 𝑦0 =
1/𝐴𝑛 , this is again done using the multiplexers at the

input stages. The output 𝑥𝑛 = 𝑒
𝑦𝑙𝑛𝑥 = 𝑥𝑦is obtained in

OutReg.

B. AXI4 Interface

In order to interface our hyperbolic CORDIC IP to AXI

the 32 bits iFIFO, two registers are implemented to buffer

the required 64 bits input to the CORDIC engine, as in

Figure 4, the out is directly buffered to the oFIFO, the

whole process is controlled using the red FSM illustrated in

Figure 5.

Figure 4 AXI4,FIFO and Power Interface

Red is designed to insure proper reading for the inputs x,y

and the output of the powering block, after reset state, the

FSM will check for data availability in iFIFO twice to load x

and y, after that powering block is activated, the output ready

signal and empty oFIFO required to to pass the data out to

oFIFO.

Figure 5 Red FSM Design

V. EXPERIMENTAL SETUP

Each sub-system was tested and verified at every stage of

the development of powering system using Vivado.

MATLAB was used to verify the test examples which were

hardcoded into the SDK code which tested and verified with

combination of our expanded CORDIC implementation

using the Digilent ZYBO board. The board hosts a Xilinx

Zynq Z-7010 SoC, 512 MB of DDR3 RAM, and several IO

interfaces, i.a., an SD card slot. The Zynq-7000 SoC

combines an Xilinx 7-series field programmable gate array

(FPGA) and a state-of-the-art hard macro comprising a 650-

MHz dual-core ARM Cortex-A9 processor, IO modules, and

memory controllers

After the system was verified larger set of inputs is used

and fed to the system using text file on SD card, the results

also were written to text file and compared with MATLAB

results.

VI. RESULTS

The powering operation was simulated validated. The

output was ready in 60 cycles, Figure 6 shows

1376.76269523125^0.1 example, the result was 2.056071,

while in MATLAB it is 2.0600886.

The error could be referred to the nature of CORDIC itself

where it gives approximate value and to the number of bits

used in the design. Figure 7 shows the error defined as in (12)

for input range of 0 ≤ 𝑥 < 1500 and 0 ≤ 𝑦 ≤ 1

The whole used range of output 𝑥𝑦 is plotted in figure 8.

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑀𝑎𝑡𝑙𝑎𝑏 𝑅𝑒𝑠𝑢𝑙𝑡 − 𝐶𝑂𝑅𝐷𝐼𝐶 𝑅𝑒𝑠𝑢𝑙𝑡

𝑀𝑎𝑡𝑙𝑎𝑏 𝑅𝑒𝑠𝑢𝑙𝑡
 (12)

Figure 7 1376.76269523125^0.1 example

Figure 7 Relative error based on MATLAB results

Figure 8 3-D plot for 𝒙𝒚

CONCLUSIONS

In this project, a powering architecture for single
precision for 𝑥𝑦 was presented and implemented on Zybo
7000 board. The use of floating point arithmetic in addition
to expanded CORDIC approach provides higher accuracy
and larger dynamics range. The extra phase of negative
iterations in the expanded hyperbolic CORDIC increases
the accuracy in a noticeable way.

Overall, this project was a satisfying experience where
we implemented our understanding of what we learned in
the course.

REFERENCES

[1]. IEEE Standard for Floating-Point Arithmetic,

ANSI/IEEE Standard 754-2008, Aug. 2008.

[2]. X. Hu, R.G. Harber, S.C. Bass, “Expanding the range

of convergence of the CORDIC algorithm,” IEEE

Transactions on Computers, vol. 40, no. 1, pp. 13-21,

Jan. 1991.

[3]. D. Muñoz, D. Sanchez, C. Llanos, M. Ayala, “FPGA-

based floating point library for CORDIC algorithms,”

in Proceedings of the 2010 Southern Programmable

Logic Conference (SPL’ 2010), March 2010, pp. 55-6

