
Beamforming

Directing a Signal

Peter Isho

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

pdisho@oakland.edu

Abstract—Beamforming is a way of directing a signal to the

users will. This is achieved by matrix manipulation which won’t

be discussed here due to its complexity. In this case, only one

portion of the beamformer is successfully working. The entire

beamformer has been developed, but isn’t fully functional.

I. INTRODUCTION

A beamformer will take an input signal from any direction
and output in a desired direction. This project has many
implications in industries where signals are everywhere. One
good example is with a basic Wi-Fi router which outputs Wi-
Fi in all directions. With this beamformer, Wi-Fi can be sent
directly to a device that needed it. This would allow for a
faster, stronger, and longer-range signal since it can be
focused in one direction instead of everywhere. Wi-Fi is one
example, but this idea can be applied in many industries that
deal with signals.

This report will mostly contain information about one part
of the beamformer because that is the part that is fully
finished. A beamformer is consisted of three different “cells”
which include an internal cell, a boundary cell, and a final
processing cell. They are connected in a cascading fashion
where the outputs of one cell are the inputs of another cell.
The boundary cell is the most complex one and is the one that
will be discussed in detail here. Everything that is discussed is
on the FPGA with no external peripherals. This is how an ideal
beamformer would be with some I/O’s as needed for data
acquisition. Discussion about the internals of the design
include pipelining, timing, cordic, division, multiplication,
and feedback loops. A two antenna beamformer has also been
developed, but it’s not working correctly so it won’t be
discussed in detail.

II. METHODOLOGY

A. Boundary Cell

This cell consists of three inputs, four outputs, and four
internal registers that are updated every iteration. The signals
that will be discussed can be seen in Figure 1. The related
equations are below figure 1 and will be the main topics of
this report. They seem to be basic equations, but implementing
everything on an FPGA isn’t as trivial as it seems. Timing was
necessary to perfect so that every signal arrives to components
when they are supposed to.

Figure 1. Boundary Cell IO

𝑥′ = √𝑥2 + |𝑢𝐼|2 [1]

𝑐𝑂 =
𝑥

𝑥′
 [2]

𝑠𝑂 =
𝑢𝐼

𝑥′ [3]

𝑥 = 𝑥′ [4]
𝑦𝑂 = 𝑐𝑂 ∗ 𝑦𝐼 [5]

One thing to be noted is that uI and sO are complex

numbers, that is the reason for two separate signals in Figure
1. The best way to deal with complex numbers in hardware
is to have two signals for the real and imaginary parts. A
second way would be to have the most significant bits relate
to the real portion while the least significant bits relate to the
imaginary portion. This method seems much more
complicated so method one was used in this project.

To start with the first equation regarding x’, at first this
equation seems incredibly difficult to implement in
hardware. After some time, it was noticed that this is the
exact output of Xn in a cordic component. This relation
made this project manageable because it is known that
square root is complicated to implement in hardware.
However, that equation can’t be completed first because the
absolute value of a complex number is the square root of the

squared roots. This means that a signal, absU, needs to be
calculated using the same Cordic component.

The first thing that is done when start goes high is to
calculate absU with the inputs uRI and uII. Those two
signals go into a cordic and after about 20 cycles, the Xout of
cordic is the value of absU * An. An is a constant which,
depending on whether using the normal or expanded version
of cordic, is 1.647 or 3.294, respectively. Since the output of
Xout is multiplied by that number, it makes sense to divide
by it to achieve the true value of absU. Division, however, is
one of the more complicated functions to achieve in
hardware and will take more cycles than cordic itself. This
can’t be avoided, but the user can try to optimize this by
pipelining which will be discussed later. Once the absU is
calculated, it can be fed into the same cordic which will have
an accompanying x value. The same division step will have
to happen when this cordic is done, which will successfully
produce the required x’ value. This signal is needed by every
other signal in the system, that is why it is calculated first.
Now that the division by An is done, three parallel divisions
can start. These divisions are for cO, sRO, and sIO but they
can be calculated in parallel because none of them rely on
each other. Once these divisions are done the final
multiplication can be done for yO, and this sequence will
repeat for the next data.

This all seems to be straightforward until it is
implemented. The components alone can be easily made, but
once they are connected in a cascading fashion issues may
appear.

B. Challenges

The initial plan for the beamformer is to have it pipelined
in a way that will output valid data every clock cycle. This is
due to the speed of signals, so it’s always best to quickly
calculate instead of wasting time. Initially the boundary cell
was developed in a non-pipelined way, and then was going to
be pipelined. It was later found that this cell can’t be pipelined
due to the calculation of x’. This signal requires the use of x
and absU. The signal absU depends on the input of the system
uRI and uII and can be available every clock cycle. The issue
comes with x since it is always updated with the new value of
x’. Since this value needs to wait for the x’ to be calculated, it
can’t be used with the next corresponding absU. This breaks
the pipeline and causes issues down the entire cell. If one step
can’t be pipelined, that means the rest of the cell can’t be
pipelined. For this reason, it was decided to complete the
project without a pipeline, and try to get as little clock cycles
as possible.

A second challenge came with the signal x which is
internal to the cell and is always being updated. Looking at the
equation, it’s obvious that x reaches infinity as time goes to
infinity. This is an issue with hardware because a specific
fixed point format was chosen at [16 14], and it’s clear that x
will surpass two integer bits relatively quickly. At first it was
unknown why the original developers of this beamformer
method would allow such an obvious mistake. After some
time was spent on it, it was clear why it must be this way.
Without getting too much into the math, x going to infinity is

exactly what should happen. This makes cO go to one and sO
go to zero, which will cascade into the other cells and
eliminate the necessary elements of the input matrix while
leaving some elements untouched. This leaves some questions
about whether all of this complexity needs to be included into
the hardware. If x is reaching large values and uI will stay
small, the new value of x won’t be noticeably changed. This
could mean that estimation might be able to work in substitute
of actual calculation. As of now, this is just speculation and it
would require extensive testing to insure the correct
functioning of beamforming. If estimation would work that
would mean the entire cell could be pipelined as initially
planned, which would allow the beamformer to be pipelined.
Instead of having around 150 cycles it could possibly be cut
down to one, but that needs further research.

Figure 3. Boundary FSM Part 1

Figure 4. Boundary FSM Part 2

It can be seen in figures 3 and 4 that the FSM for the
boundary cell is quite complex. This is because of an initial
setup that the cell requires. There is a 99% chance that this
could be simplified, but for the sake of time it was
implemented the brute force way.

C. Axi-Full Protocol

With the boundary cell fully working, the next step was to
design hardware that could interface between the on-board
processing system and the programmable logic. This was done
like previous labs in the course, which utilized an input and
output FIFO which held the data that was input to the system
and ready to be outputted. The details of this are extremely
complex, so a high-level view of things will be discussed here.
A state machine controls when data is fed into the boundary
cell, started, and when the output data is ready. This is done
by several signals that indicate when all of these processed
should execute. The start signal goes high when enough data
has been loaded to the input FIFO, and only when the done
signal is high will the output FIFO be loaded. This signal will
also begin the next cycle, if data is available on the input
FIFO. The c code that was written to load and read data onto
the FIFO’s wasn’t complicated, and consisted of less than 50
lines of code. Overall, including the axi-full protocol wasn’t
an issue.

D. 2 Antenna Beamformer

The two antenna beamformer that was also designed

should be discussed here even though a functioning design

hasn’t been made. With the boundary cell complete, the

internal cell needed to be designed and implemented.

Figure 2. Internal Cell

As can be seen in Figure 2, the internal cell has many

inputs and outputs like the boundary cell. The following

equations determine the output values.

𝑢𝑂 = 𝑐 ∗ 𝑢𝐼 − 𝑐𝑜𝑛𝑗(𝑠𝐼) ∗ 𝑥 [6]

𝑥 = 𝑠 ∗ 𝑢𝐼 + 𝑐 ∗ 𝑥 [7]

The challenges of this cell were mainly aimed at timing,

since it’s all multiplication and addition components.

Making sure the signal value is correct when it is needed

was the only thing to consider in this component. Once the

internal cell was complete it was time to connect it all.

There were two boundary cells, three internal cells, and one

final processing cell (which was one multiplication).

This was quite a challenge initially, but like the other

issues with this project it was overcome after some time.

The problem came with the boundary cell taking around 150

cycles to complete while the internal cell took around 20. I

introduced a start and done signal to every component, so

they could be in sync. This seemed to fix the problem and

allowed for further development with the Axi-Full

implementation. The setup for the entire beamformer was

extremely like the boundary cell, except for more input

signals. The state machine had additional states, but the

overall process was basically identical. The only issue is

that the results that were obtained from the SDK terminal

didn’t seem correct. There wasn’t enough time to analyze

the results, but there’s a low chance they were right. Further

research would be able to find the problem, it’s most likely

a small issue.

III. EXPERIMENTAL SETUP

This project was done on a Zybo board that contains a
SOC that has a Zynq-7000 FPGA and a dual core ARM
processor. This allows for seamless communication between
a processing system and programmable logic. To do this
interaction, a protocol known as Axi-Full was used. The
details of that protocol are beyond this report. To interact with
the processing system, Xilinx SDK was used and
communicated with the board via UART. All of this was on
board with no external peripherals which made everything
work smoothly. The inputs to the FPGA were mimicking
signals, and the outputs were displayed to the SDK terminal.

IV. RESULTS

The results of the boundary cell were a success. The output
data that was produced on the terminal matched the expected
results. This was confirmed by MATLAB and a Vivado
simulation before implementing the processing system.

Although the results of the beamformer weren’t successful, it
shouldn’t be too complicated to see what went wrong. The
main thing would be to go back to the simulation of the IP and
see what went is happening. Once the IP is working in the
simulation, the next step would be to add the AXI-Full and
then simulate that. After that it would be time to test it on the
board via Xilinx SDK.

CONCLUSIONS

The main take-away from this project is that theory and
practice are truly different, and this needs to be considered. In
theory, the beamformer should output data every clock cycle.
However, as was shown above, this will be impossible without
some estimation. It is impossible to pipeline a feedback loop,
so there would have to be estimation for this to work as
intended. Topics that were used heavily in this project were
timing and pipelining. Timing is one of, if not the, most
important things in hardware. Every signal needs to be its
correct value when it is needed, and this isn’t an easy task. The
use of state machines and registers were critical in this project.
Pipelined cordic, division, and multiplication were initially
used until the problem of the feedback loop were found.
Implementing all three was a great learning experience even
if they didn’t make it to the final design.

The issues that remain are the implementation of the entire
beamformer. Specifically, the problems with the current
rendition are unknown but with some time can be found. As
stated earlier, the best place to start would be the simulation
of the IP without the Axi-full hardware.

State the main take-away points from your work. List
further work as well as what you learnt. What issues remain
to be solved? What improvements can be made?

REFERENCES

[1] Digilent, Nexys4 DDR FPGA Board Reference Manual, Rev. C, pp.
12 & 14-17, September 2014.

[2] Llamocca, D. (2017). VHDL Coding for FPGAs. Retrieved Fall 2017,
from http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

[3] Haykin, S. (2001) Adaptive Filter Theory 4th Edition . Prentice Hall

