
Engine Control Unit

ST: Reconfigurable Computing Final Project

Chris Taylor, Robert McInerney

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

cjtaylor@oakland.edu, ramciner@oakland.edu

 Abstract - This project attempts to implement a co-

design approach for a electronic control unit (ECU)

for an internal combustion engine. The high speed

VHDL circuitry works to compute the high speed and

accurate DETAILS of a running internal combustion

engine. These DETAILS can be reported to the user

and used to operate additional electronics to increase

performance and reliability of the internal

combustion engine.

 I. Introduction

All modern day automobiles contain electronic

control units (ECU)s. The ECU functions as the

‘brain’ of the engine and automobile. By adding

electronics to the internal combustion engine,

the performance and reliability of the system can

be improved. This project was adapted from an

engine control unit being developed for a unique

rotary valve internal combustion engine. In this

design, the traditional poppet valve train was

replaced with a rotating cylinder which allows

fuel and air to flow in and out of the cylinder.

Below in figure 1 is a comparison of the

traditional valvetrain and a rotary valve. This

valve design has possible advantages for the

engine which were explored by Oakland

University’s Senior Design projects.

Figure 1: Valve Train Comparison

In order to rotate this unique valve, it was

chosen to use electronics involving a servo-

motor which creates the need for the ECU. In

order for the rotary valve to be actuated

correctly, a robust electronic control system

which calculated rotational speed and crankshaft

angular position. These two pieces of

information are critical for driving not only the

rotary valve, but any electronics which may be

added to this platform in the future.

Utilizing the co-design nature of the Zynq SoC,

the high speed digital circuitry created with

VHDL is analyzed and configured by the Zynq

PS, which has instructions written in C. The

combination of these two enables this system to

be more accessible and configurable for the

future, if parameters change and additional

electronic peripherals are added to this project.

The entire co-design block diagram can be seen

in Appendix A figure 1.

mailto:cjtaylor@oakland.edu

 II. Methodology

A. Crank Angle Computer

As previously mentioned, the need for the ECU

to compute crankshaft angular position and

rotational speed is necessary for successful

operation of the engine. A block diagram of the

whole component and its derivatives can be seen

in Appendix [A] figure 2.

The first important component is the ‘pulse

counter’. This component reads the incoming

pulse train from the sensor and counts the

number ‘sampling clock ticks’ that the pulse is

high or low for. The sampling clock frequency

was chosen based on the input frequency range,

so that an 8 bit value would hold the number

anywhere in the range of 1000-5000 rpm.

The gap synchronizer component contains a

FSM which receives the tooth count from the

tooth counter, and looks for the ‘missing tooth’

in the pulse train. The pulse counter simply

counts the falling edges to generate a ‘tooth

count’. Because the teeth are a fixed length, and

so is the ‘missing tooth’ it is easy to know which

‘low pulse’ seen is the missing tooth. This is the

fundamental operation of the gap synchronizer.

Once it finds the ‘gap’ it should know which

tooth is present, and outputs the ‘sync’ signal,

which essentially means the whole system is

working and the angular output can be assumed

to be valid. The FSM diagram for this

component is shown in Appendix B figure 2 .

The angle counter component also contains a

FSM. This component adds the degrees for each

tooth, gap, and the missing tooth, whenever it

receives the appropriate signals, and ‘sync’ is

asserted. The output angle is in the FX format

u[16 6] for accuracy.

The RPM calculator features a text based LUT

to calculate the rotational speed (in rpm) based

off the width of the previous tooth in sampling

clock ticks. Because the tooth width is only 8

bits, and the RPM input range is 1000-5000 rpm,

the resolution is rather poor. The output RPM is

in the FX format u[16 3] for accuracy.

B. Peripheral Interface

The peripheral interface controller is an

important part of our overall system. In the

future there might arise a need in order to add

other components to the system. These

components can include things such as fuel

injectors. By utilizing the calculated angular

position, these peripherals can be commanded to

operate at very precise times during the four-

stroke cycle. Most peripherals may require a

pwm interface with a duty cycle that can vary

depending on the angle that is needed.

Shown in Appendix C Figure 1, the system

works. Four independent channels were created

for PWM control. It is shown that the duty cycle

changes based on parameters that are given to

the system via AXI full interface.It can also be

observed how the component operates at

specific stop and start angles. This is part of the

AXI full interface as well. The components

inside include an FSM that controls each of the

pwm channels. The pwm channels are generic in

nature in order to allow easy modification in the

future.

C. Servo Controller

The servo controller interface has a similar

architecture as the pwm interface. The servo

requires a 50 percent duty cycle. This also must

change based on the current rpm of the system.

So the rpm is fed into the servo controller

module to do the calculation.

The current rpm determines the period of the

PWM waveform delivered to the servo motor.

By adjusting the period between 1 kHz and 100

kHz, greater resolution in speed variation was

achieved. To calculate the required period, a

pipelined divider was used, as a non-constant

division was required for this calculation.

D. RPM Readout Circuitry

It was decided that reporting the instantaneous

and maximum RPM achieved to the user may be

useful information. In order to do so, a register

with a comparator was used to latch the

maximum rpm achieved. This value was

concatenated with the 16bit current rpm and

loaded into the read FIFO. It worked out nicely

that these numbers were 16 bits, that way only

one read is required to get the maximum and

instantaneous rpm.

III. Experimental

Setup

A. Simulated Pulse Train

The pulse train received from the crank position

sensor is the main input for this ECU to function

properly. To ensure that development was

continued accurately, the pulse train was

captured using an oscilloscope, and a simulated

pulse train was created for testbenching

purposes. Great care was taken to ensure this

simulated signal was as close as possible to the

real sensor output. After so many teeth there is a

larger gap and then the very next tooth also is a

different size. In simulation this signal is created

near perfectly. For demonstration purposes, this

signal was created with an arduino. This pulse

did not turn out as perfect.

B. Testbench Simulations

Great care was placed in ensuring the digital

components being created were functioning

correctly. Each component was simulated in a

testbench. Appendix C Shows each component

working.

C. Functional Implementation

The experimental setup for this device included

using multiple hardware tools. First an arduino

microcontroller is used to simulate the input of

the pulse train(combustion engine). In order to

use the arduino with they zybo, a simple voltage

divider is used to bring the logic level down

from5 to 3.3V. Now the software was loaded

onto the zybo. After configuring the zybo with

the fpga fabric, the elf file generated from the c

instructions was loaded on the board. This

allows writing to the input fifo to the AXI Full

interface. After two different writes are made to

configure the peripheral channels, the

appropriate commanded signals can be seen on

the respective channel. As illustrated by

Appendix C Figure 3, the pwm channel starts

after sync is asserted in the second cycle.

 IV. Results

A. Challenges

Multiple challenges were faced throughout the

development of this project. Some of these

shortcomings include that the implementation

did not meet timing. The culprit of the timing

issue was the use of numeric_std’s ‘/’ operator

when calculating the period of the pwm signal

generated for the servo motor, as this value is

based off the current RPM. The alternative of

this was to add a pipelined divider, which

resolved the timing issue. After utilizing an

adaptation of Professor Llammoca’s divider

timing was achieved. The next problem to face

was the successful operation of the servo motor

in hardware. It was quickly observed that there

was odd behavior from the pwm channel. Shown

below in figure X is the scoped PWM output to

the servo motor.

The amplitude and frequency were correct, but

the signal was stopping and starting

sporadically.

The first guess was that it was not staying in

sync. For safety purposes, the system was

designed to shut off all outputs when the system

was not in sync. This safety feature was

disabled, so that the servo would spin no matter

if the system was synced or not. This attempt

worked, but does cripple some of the control

abilities of this system. Without proper ‘syncing’

the angular position calculation cannot be

performed, and unfortunately any positional

features will not work. For demonstration

purposes the angular position features were

removed. It is believed that the imperfect pulse

train signal from the hardware is the culprit of

the sync loss. With much more time and effort,

this system could be improved to tolerate these

imperfections and function properly in physical

hardware implementation.

B. Functional Operation

After disabling the angular position features of

the system, the entire ECU system which

involved the AXI full interface appears to work

marginally well. The improvements listed above

will be good for continued development of this

project, but the functional foundation of the

project has been laid, and works well to be

improved upon.

At first when we implemented the system we did

not see exactly what we thought we would. This

is due to the fact that the pwm channels did

nothing. This did not make sense because we

had done simulations without and with the AXI

full testbench. We needed to dive into the issue

further to really figure out why we saw nothing.

We put an oscilloscope to the channel that was

associated with running the servo. At this

moment we were able to see that there was

something happening very wrong in the system.

The system was coming out of sync. If the

system is out of sync then we will get nothing on

the pwm channel because there will be no angle.

In order to resolve this issue we tried to do post

timing analysis simulations. The simulation of

the axi full test bench was not allowing us to do

a post timing analysis. So we essentially got rid

of the angle component in the system and

allowed for modification of the pwm channel

and once turned on they stay on.

V. Conclusions

A. Goals Achieved

This project established how the very precise

nature of VHDL circuitry can be applied to a

real world problem, and can be improved with

the use of a co-design combination of a

microcontroller. For this particular application it

was useful to incorporate user-control of the

ECU by utilizing the Zynq PS. The highspeed

circuitry was configured by sending explicit

commands via the AXI full interface. This

feature was also incorporated for reporting the

maximum and instantaneous RPM to the user

via the AXI full interface and vivado SDK

terminal.

B. Potential Improvements

This project was a very involved and ambitious

project for a small team in only one semester.

Because of this fact, not every component was

working as robust as desired.

Robustness, higher resolution

C. Knowledge

Much insight into not only VHDL development,

but co-design principles, the AXI full protocol,

and the operation of internal combustion engines

was gained through this project. The inclusion of

the AXI full interface was very useful in the

aspect of co-design. Another topic incorporated

into this project is pipelining for improved

computation speed, as well as utilizing text I/O’s

in vhdl, which proved to be a very handy tool to

improve computation speed, and reduce design

complexity.

References
[1] ECE 4900 lecture notes

Appendix A: Block Diagrams

Figure 1: Entire Design

Figure 2: Crank Angle Computer

Appendix B: FSM Diagrams

Figure 1: Gap Synchronizer FSM

Figure 2: Angle Counter FSM

Appendix C: Timing Simulation Results

Figure 1: Peripheral Interface Simulation

Figure 2. Peripheral Interface Simulation 2

Figure 3. Synchronization after 1 Revolution and Change in input speed

Figure 4: Working Angle and RPM Calculations

