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 Abstract  - This project attempts to implement a co-

design approach for a electronic control unit (ECU) 

for an internal combustion engine. The high speed 

VHDL circuitry works to compute the high speed and 

accurate DETAILS of a running internal combustion 

engine. These DETAILS can be reported to the user 

and used to operate additional electronics to increase 

performance and reliability of the internal 

combustion engine. 
 

  I.        Introduction 

 

All modern day automobiles contain electronic 

control units (ECU)s. The ECU functions as the 

‘brain’ of the engine and automobile. By adding 

electronics to the internal combustion engine, 

the performance and reliability of the system can 

be improved. This project was adapted from an 

engine control unit being developed for a unique 

rotary valve internal combustion engine. In this 

design, the traditional poppet valve train was 

replaced with a rotating cylinder which allows 

fuel and air to flow in and out of the cylinder. 

Below in figure 1 is a comparison of the 

traditional valvetrain and a rotary valve. This 

valve design has possible advantages for the 

engine which were explored by Oakland 

University’s Senior Design projects. 

 
Figure 1: Valve Train Comparison 

 

In order to rotate this unique valve, it was 

chosen to use electronics involving a servo-

motor which creates the need for the ECU. In 

order for the rotary valve to be actuated 

correctly, a robust electronic control system 

which calculated rotational speed and crankshaft 

angular position. These two pieces of 

information are critical for driving not only the 

rotary valve, but any electronics which may be 

added to this platform in the future. 

 

Utilizing the co-design nature of the Zynq SoC, 

the high speed digital circuitry created with 

VHDL is analyzed and configured by the Zynq 

PS, which has instructions written in C. The 

combination of these two enables this system to 

be more accessible and configurable for the 

future, if parameters change and additional 

electronic peripherals are added to this project. 

The entire co-design block diagram can be seen 

in Appendix A figure 1. 
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        II.       Methodology 

A.   Crank Angle Computer 

As previously mentioned, the need for the ECU 

to compute crankshaft angular position and 

rotational speed is necessary for successful 

operation of the engine. A block diagram of the 

whole component and its derivatives can be seen 

in Appendix [A] figure 2.  

 

The first important component is the ‘pulse 

counter’. This component reads the incoming 

pulse train from the sensor and counts the 

number ‘sampling clock ticks’ that the pulse is 

high or low for. The sampling clock frequency 

was chosen based on the input frequency range, 

so that an 8 bit value would hold the number 

anywhere in the range of 1000-5000 rpm.  

 

The gap synchronizer component contains a 

FSM which receives the tooth count from the 

tooth counter, and looks for the ‘missing tooth’ 

in the pulse train. The pulse counter simply 

counts the falling edges to generate a ‘tooth 

count’. Because the teeth are a fixed length, and 

so is the ‘missing tooth’ it is easy to know which 

‘low pulse’ seen is the missing tooth. This is the 

fundamental operation of the gap synchronizer. 

Once it finds the ‘gap’ it should know which 

tooth is present, and outputs the ‘sync’ signal, 

which essentially means the whole system is 

working and the angular output can be assumed 

to be valid. The FSM diagram for this 

component is shown in Appendix B figure 2 . 

 

The angle counter component also contains a 

FSM. This component adds the degrees for each 

tooth, gap, and the missing tooth, whenever it 

receives the appropriate signals, and ‘sync’ is 

asserted. The output angle is in the FX format 

u[16 6] for accuracy. 

 

The RPM calculator features a text based LUT 

to calculate the rotational speed (in rpm) based 

off the width of the previous tooth in sampling 

clock ticks. Because the tooth width is only 8 

bits, and the RPM input range is 1000-5000 rpm, 

the resolution is rather poor. The output RPM is 

in the FX format u[16 3] for accuracy. 

B.   Peripheral Interface 

The peripheral interface controller is an 

important part of our overall system. In the 

future there might arise a need in order to add 

other components to the system. These 

components can include things such as fuel 

injectors. By utilizing the calculated angular 

position, these peripherals can be commanded to 

operate at very precise times during the four-

stroke cycle. Most peripherals may require a 

pwm interface with a duty cycle that can vary 

depending on the angle that is needed.  

 

Shown in Appendix C Figure 1, the system 

works. Four independent channels were created 

for PWM control. It is shown that the duty cycle 

changes based on parameters that are given to 

the system via AXI full interface.It can also be 

observed how the component operates at 

specific stop and start angles. This is part of the 

AXI full interface as well. The components 

inside include an FSM that controls each of the 

pwm channels. The pwm channels are generic in 

nature in order to allow easy modification in the 

future. 

C. Servo Controller 

The servo controller interface has a similar 

architecture as the pwm interface. The servo 

requires a 50 percent duty cycle. This also must 

change based on the current rpm of the system. 

So the rpm is fed into the servo controller 

module to do the calculation. 



 

The current rpm determines the period of the 

PWM waveform delivered to the servo motor. 

By adjusting the period between 1 kHz and 100 

kHz, greater resolution in speed variation was 

achieved. To calculate the required period, a 

pipelined divider was used, as a non-constant 

division was required for this calculation. 

D. RPM Readout Circuitry 

It was decided that reporting the instantaneous 

and maximum RPM achieved to the user may be 

useful information. In order to do so, a register 

with a comparator was used to latch the 

maximum rpm achieved. This value was 

concatenated with the 16bit current rpm and 

loaded into the read FIFO. It worked out nicely 

that these numbers were 16 bits, that way only 

one read is required to get the maximum and 

instantaneous rpm.                                                       

III.      Experimental 

Setup 

A. Simulated Pulse Train 

The pulse train received from the crank position 

sensor is the main input for this ECU to function 

properly. To ensure that development was 

continued accurately, the pulse train was 

captured using an oscilloscope, and a simulated 

pulse train was created for testbenching 

purposes. Great care was taken to ensure this 

simulated signal was as close as possible to the 

real sensor output. After so many teeth there is a 

larger gap and then the very next tooth also is a 

different size. In simulation this signal is created 

near perfectly. For demonstration purposes, this 

signal was created with an arduino. This pulse 

did not turn out as perfect. 

B. Testbench Simulations 

Great care was placed in ensuring the digital 

components being created were functioning 

correctly. Each component was simulated in a 

testbench. Appendix C Shows each component 

working. 

C. Functional Implementation 

The experimental setup for this device included 

using multiple hardware tools. First an arduino 

microcontroller  is used to simulate the input of 

the pulse train(combustion engine). In order to 

use the arduino with they zybo, a simple voltage 

divider is used to bring the logic level down 

from5 to 3.3V. Now the software was loaded 

onto the zybo. After configuring the zybo with 

the fpga fabric, the elf file generated from the c 

instructions was loaded on the board. This 

allows writing to the input fifo to the AXI Full 

interface. After two different writes are made to 

configure the peripheral channels, the 

appropriate commanded signals can be seen on 

the respective channel. As illustrated by 

Appendix C Figure 3, the pwm channel starts 

after sync is asserted in the second cycle.                                                                 

  IV.      Results 

 

A. Challenges 

Multiple challenges were faced throughout the 

development of this project. Some of these 

shortcomings include that the implementation 

did not meet timing. The culprit of the timing 

issue was the use of numeric_std’s ‘/’ operator 

when calculating the period of the pwm signal 



generated for the servo motor, as this value is 

based off the current RPM. The alternative of 

this was to add a pipelined divider, which 

resolved the timing issue. After utilizing an 

adaptation of Professor Llammoca’s divider 

timing was achieved. The next problem to face 

was the successful operation of the servo motor 

in hardware. It was quickly observed that there 

was odd behavior from the pwm channel. Shown 

below in figure X is the scoped PWM output to 

the servo motor.  

 
The amplitude and frequency were correct, but 

the signal was stopping and starting 

sporadically. 

The first guess was that it was not staying in 

sync. For safety purposes, the system was 

designed to shut off all outputs when the system 

was not in sync. This safety feature was 

disabled, so that the servo would spin no matter 

if the system was synced or not. This attempt 

worked, but does cripple some of the control 

abilities of this system. Without proper ‘syncing’ 

the angular position calculation cannot be 

performed, and unfortunately any positional 

features will not work. For demonstration 

purposes the angular position features were 

removed. It is believed that the imperfect pulse 

train signal from the hardware is the culprit of 

the sync loss. With much more time and effort, 

this system could be improved to tolerate these 

imperfections and function properly in physical 

hardware implementation.  

 

 

B. Functional Operation 

After disabling the angular position features of 

the system, the entire ECU system which 

involved the AXI full interface appears to work 

marginally well. The improvements listed above 

will be good for continued development of this 

project, but the functional foundation of the 

project has been laid, and works well to be 

improved upon.  

 

At first when we implemented the system we did 

not see exactly what we thought we would. This 

is due to the fact that the pwm channels did 

nothing. This did not make sense because we 

had done simulations without and with the AXI 

full testbench. We needed to dive into the issue 

further to really figure out why we saw nothing. 

We put an oscilloscope to the channel that was 

associated with running the servo. At this 

moment we were able to see that there was 

something happening very wrong in the system. 

The system was coming out of sync. If the 

system is out of sync then we will get nothing on 

the pwm channel because there will be no angle. 

In order to resolve this issue we tried to do post 

timing analysis simulations. The simulation of 

the axi full test bench was not allowing us to do 

a post timing analysis. So we essentially got rid 

of the angle component in the system and 

allowed for modification of the pwm channel 

and once turned on they stay on. 

 

 

V. Conclusions 

A. Goals Achieved 

This project established how the very precise 

nature of VHDL circuitry can be applied to a 

real world problem, and can be improved with 

the use of a co-design combination of a 

microcontroller. For this particular application it 

was useful to incorporate user-control of the 

ECU by utilizing the Zynq PS. The highspeed 

circuitry was configured by sending explicit 

commands via the AXI full interface. This 



feature was also incorporated for reporting the 

maximum and instantaneous RPM to the user 

via the AXI full interface and vivado SDK 

terminal. 

 

B. Potential Improvements 

This project was a very involved and ambitious 

project for a small team in only one semester. 

Because of this fact, not every component was 

working as robust as desired.  

Robustness, higher resolution 

C. Knowledge 

Much insight into not only VHDL development, 

but co-design principles, the AXI full protocol, 

and the operation of internal combustion engines 

was gained through this project. The inclusion of 

the AXI full interface was very useful in the 

aspect of co-design.  Another topic incorporated 

into this project is pipelining for improved 

computation speed, as well as utilizing text I/O’s 

in vhdl, which proved to be a very handy tool to 

improve computation speed, and reduce design 

complexity.  
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Appendix A: Block Diagrams 

 

 
Figure 1: Entire Design 

 

 

 
Figure 2: Crank Angle Computer 

 

 



Appendix B: FSM Diagrams 

 

 
Figure 1: Gap Synchronizer FSM  



 
Figure 2: Angle Counter FSM 

 

  



Appendix C: Timing Simulation Results 

 

 

 
Figure 1: Peripheral Interface Simulation 

 

 
Figure 2. Peripheral Interface Simulation 2 

 

 
Figure 3. Synchronization after 1 Revolution and Change in input speed 

 



 
Figure 4: Working Angle and RPM Calculations 

 

 

 

 

 


