
December 2016

Convolution Optimization with Zynq FPGAs

With Application to Convolutional Neural Networks

Michael Losh, Oluwakemi Adabonyan
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: mlosh@oakland.edu, onadabonyan@oakland.edu

Abstract​ —We have designed a Zynq AXI Full
Interface peripheral to calculate vector dot
products as a parallel operation in hardware
targeting Convolution operations such as found in
Convolutional Neural Networks. Execution speed
of an example neural network using the dot
product peripheral was slightly better than a
random-access software-only implementation, but
actually slower than a dot-product optimized
software-only implementation. The performance
limitations are analyzed and possible further
enhancements identified.

I. Introduction

Neural Networks are arrangements of signal
processing units inspired by neural systems of real
organisms with many simplifications to make their
implementation in a wide variety of applications such
as signal filtering, feature detection, and stimulus
classification feasible. Neural network models for
signal processing and recognition were explored in
the 1950s and 1960s, but a lack of scalable training
methods and suitable hardware platforms for large
networks limited widespread adoption. Interest
waned until ​backpropagation “learning” techniques
were developed in the 1980s that enabled
usefully-sized networks for a variety of real tasks to
be trained​1​. Most examples of neural nets in this ear
were typically implemented on standard digital
computers, although some custom hardware chips for
implementing processing units with configurable
connections were developed and demonstrated in the
1980s and 1990s (Synaptics Inc. was founded by
early researchers in this field). Interest in neural
networks plateaued again due in part to attention
placed in ​Digital Signal Processing (DSP) and

statistical methods of ​Machine Learning (ML) until
the late 1990s through today, when a neural network
architecture further inspired by the visual cortex of
animals was developed and found a much more
tractable method of implementing many-layered
networks, also known as ​deep networks. This
network architecture is called a ​Convolutional Neural
Net or CNN because the core feature of it is a form of
convolution operator within the early layer(s) of the
network. In the 2000s and 2010s, implementations of
CNN and other deep networks received a significant
boost in training speed and execution speed with the
application of highly parallel processing technologies
such as found in ​graphic processing units (GPU) and
field-programmable gate arrays (FPGAs). These
approaches are being used for a wide variety of
applications in fields as diverse as automotive,
financial, marketing, security, and many more.

A.​ ​Basics

A neuron unit of a neural network is an entity
that produces a non-linear response signal to a
weighted sum of input signals originating from
input-sensing units or earlier neuron units. Units
can be organized in a variety of ways.

1

To keep the organization easier to understand,
model, and manage, the network is usually
organized into multiple layers, where each unit
in one layer only receives inputs from the lower
layer, and only provides input to the higher
level. The layer connected directly to sensor
signals or some other source of information is
called the ​Input Layer​ . The layer proving output
signals, such as signal/object classification, or
feature location within a larger image, is called
the ​Output Layer​ . Most networks that are part
of a meaningful application have one or more
additional layers in between the input and output
layers. Each of these layers are traditionally
called ​Hidden Layers​ , because they are not
directly observing nor providing any outside
signal. Units in one layer may be connected to
all units in another layer, in which case the layer
is called a ​Fully-Connected layer. In other
networks, units in a layer may be only connected
to a subset of units. This subset is often termed
a ​Receptive Field​ , especially when it is a

spatially compact sample of a larger image or
data set.

The output activation signal of a neural net unit
is typically a scalar value represented by either a
real number within a modest range (-10 to +10)
or a scaled integer, usually 8 to 32 bits in size.
Each above the Input Layer unit receives inputs
from one or more other units. The activation
signal is modified by a weight factor, usually
modeled as a simple proportional factor with a
small value, typically -1 to +1 for real-valued
signal representations, or a small fixed-point
scaled-integer factor. When modelled with
simple linear proportional weights, the total
weighted input to a unit can be represented by
the vector dot product of one vector holding the
output activation levels of the connected units
and a second vector holding the corresponding
weight values: (z = ​w​⋅​x​). This total weighted
input value z is then taken as the input to the
unit’s activation function. While purely linear
activation functions are possible, they do not
capale of performing sophisticated
discrimination and other interesting tasks.
Therefore, some form of non-linear function is
needed. To date, the most common approaches
are a ​sigmoid​ function, or a rectified-linear
function, also known as ​ReLU​ . The sigmoid

function received a lot of attention because this

2

S-shaped curve models the activation of
biological neurons reasonably well, which do
not respond much to low levels of input
stimulus, begin to increase in response to some
level of input, then begin to saturate as the input
level keeps increasing.

The two varieties of the sigmoid employed are
the logistic function 1/(1 + e​-z​) whis is alway
positive from 0 to 1, and the hyperbolic tangent
function tanh(z) = (e​z - e​-z​) / (e​z + e​-z​), which is
symmetric about the axis and ranges from -1 to
+1. Perhaps more recently, the ReLU function
max(0, z) has been shown to be equally if not
better-performing in many applications with
adequate training with obvious benefits in terms
of lower hardware resources and/or execution
time cost.

B.​ ​ Convolutional Neural Networks

Convolutional neural networks use three basic
ideas: ​local receptive fields​ , ​shared weights​ , and
pooling to make deep networks practical to
develop and use in practice.

a. Local Receptive Fields

Each input pixel is connected to a layer of
hidden neurons. The connections are made in
small localized regions of the input image. Each
neuron in the first hidden layer is connected to a
small region (e.g. 5 by 5) of input pixels, as
illustrated here:

The region in the input image is called the ​Local
Receptive Field for that hidden neuron. Each of
the connections to the input units has a weight,
and the hidden neuron itself has an overall bias.
This particular hidden neuron can be defined as
learning to analyze its particular local receptive
field.

In effect, one may imagine this Local Receptive
Field sliding over entire input image in small
increments, which is known as the ​Stride
Length​ , and feeding the total weighted input to
the units in the first hidden layer. For an input 28
by 28 pixel image, and a 5 by 5 local receptive
fields, there will be 24 by 24 neurons in the
hidden layer. This is because one can only move
the local receptive field 23 neurons across and
23 neurons down from the origin position,
moving from the top left of the input image to
the bottom right.

3

b. Shared Weights and Biases

Each hidden neuron in the convolutional layer
has a bias and same set of weights as all other
units in the same layer connected to their
respective local receptive fields. The output is
mathematically represented below:

Given some non-uniformity in the weights, the
weighted input will be stronger or weaker
depending on how well the weights correspond
to a particular pattern of activation in the
previous layer at the location of the receptive
field. We can say that the weights are used to
detect a specific feature at each location in the
input layer, forming a type of map of where the
pattern is strongly present, absent, or
anti-correlated The map from the input layer to
an hidden layer is usually called a ​Feature Map​ .
All weights defining the feature map are the
Shared Weights​. A particular ​Shared Bias
value may be used for all units in the feature
map, or individual bias values may be trained.
All the shared weights and bias are often said to
define a ​Filter​.

In practice, most CNNs use multiple layers of
convolutional layers, each with multiple feature
maps with distinct sets of shared weights. Later

layers of CNNs often use fully-connected layers
for final output, as illustrated here.

c. Pooling Layers

Pooling layers exist alongside the convolutional
layers. They are used immediately after
convolutional layers to downsample the previous
layer’s output to improve position invariance
(ability to detect a feature wherever it occurs),
improve generalization, and to reduce the
computing resources and memory by having
fewer units and weights in the later layers. Often
in CNNs, the ​Max Pooling procedure is used,
whereby the maximum activation value within a
2 by 2 region of the convolutional layer is
selected and passed on to the next layer. The
activation value selected may be adjusted with a
bias, but it is common to omit biasing in this
layer. For a 28 by 28 output convolutional layer,
after max pooling, we have a 14 by 14 neuron
layer.

d. Summary of Convolution Steps in LeNet-5

LeNet-5 is a well-known example of a CNN. It
begins with the input 32 by 32 pixels. This is
followed by a convolution layer of 6 feature
maps, each of 5 by 5 local receptive fields. This
produces a 6 by 28 by 28 layer of hidden feature

4

neurons. Following max pooling applied to 2 by
2 regions across the 6 feature maps, the resulting
layer is a 6 by 14 by 14 hidden feature neuron
layer. Convolution is once again done, and this
produces a 10 by 10 convolutional layers of 16
feature maps. Max pooling is repeated to
produce a 16 by 5 by 5 hidden feature neuron
layer.
The next connection represents a 1D array
convolutional layer with 120 feature maps. This
is connected to the Fully connected layer of 84
feature maps and finally to the final layer of the
connection. This Output, fully connected, layer
connects every neuron from the max-pooled
layer to every one of the 10 output neurons (digit
0 to 9).

We chose a similar structure for our final
project, but simplified the overall network by
having fewer feature maps and fewer
fully-connected neurons. Our specific design is
discussed in the Methodology section which
follows below.

II.​ ​Methodology

For our final project we wanted to implement
hardware acceleration of a CNN. CNNs are
highly effective while having modest numbers
of neuron connection weights in the early
convolutional layers, while the convolution
operation itself is repeated many times over the
input data and earlier layer outputs. This
scenario is ideal for hardware parallelization,
which is why GPU coprocessors and FPGA
hardware have both been used to implement key
parts of CNN architectures. Reconfigurable

FPGAs provide another capability that might be
useful if not essential for managing very large
input datasets: ability to reconfigure the
hardware to optimize performance for layers and
connections organized in different ways.​2 Such a
variation is quite common: lower layers have
spatially-compact receptive fields and
widely-shared weights, middle layers implement
pooling or sample number of lower-level feature
maps. Higher layers may be more
widely-distributed connections, or even a
fully-connected layer.

As described above, there are two key
calculations that are performed by neural
network units: weighted average of inputs,
followed by a nonlinear function. Of these, the
function that offers the best opportunity to
employ highly parallel computing resources is
the weighted input operation. When one
considers that the CNN use of shared weights
means that the weight values do not need be
repeatedly passed to the hardware, there is even
more opportunity to make effective use of
configurable hardware. For relatively-fixed
applications, it is possible to lock in the weights
in a custom hardware design through the use of
read-only memory (ROM) ​look-up tables
(LUTs). During class, an intriguing method of
processing weighted averages called Distributed
Arithmetic was briefly covered and described in
some detail in a class handout​3​. We did not
attempt to implement this method, but we would
encourage future students to consider
implementing it as a good method to accelerate
weighting factors in a variety of applications.

A.​ ​LeNet-5

We chose to implement the dot product
operation to accelerate a simplified version of
LeNet-5​ , a very famous CNN architecture. The
LeNet architecture was first introduced by

5

LeCun et al. in their widely-cited 1998 paper,
Gradient-Based Learning Applied to Document
Recognition​ .​ 4 It can be useful for pattern
inference. The test dataset is the MNIST dataset
described further below, which contains a total
of 70,000 grayscale images of handwritten
digits as one might find on a postal envelope or
paper forms filled out by hand​5 . The LeNet-5
has 3 convolutional layers (C1, C3, C5), 2
subsampling “max pooling” layers (S2, S4) , a
fully-connected layer (F6) and an output layer.

In each “feature map”, nodes are organized in a
2D image fashion and have shared weights that
are strongly stimulated by a specific feature at a
corresponding location in the lower layer. Each
node in a convolutional layer is identified by
(column index, row index, feature map index).
Each pooling layer only connects to a small
receptive field in its corresponding feature map
and implement a simple function such as
maximum, or average within the small “pool” of
inputs. There is no crossover between the
convolution layer and subsampling Layer.

B.​ ​Our CNN Design

In our implementation, we kept the input image
at its original 28 by 28 pixel size. We convert
the 8-bit 0 to 255 grayscale image levels to a
fixed-point value ranging from -1.0 for 0 to +1.0
for 255.

That input layer is then scanned by four feature
map layers where each of their units observes a

specific 5 by 5 pixel receptive field region of the
original image. The size of 5 of the receptive
field in each dimension means that there are 24
(28 - 5 + 1) units by 24 units in each of the four
feature maps of the first convolutional layer.
These are downsampled through max pooling by
a layer with four sets of 12 by 12 units, each of
which returns the maximum value of a 2 by 2
receptive field with no overlap (stride of 2).

The second convolutional layer produces six
feature maps using 100 weights each (5 by 5
within one feature map, and all four feature
maps scanned at the same corresponding
location). There are eight distinct receptive field
positions along each dimension, for a total of 8
by 8 units, downsampled again through max
pooling to produce a total of six 4 by 4 little
feature maps. These feature maps detect
more-abstract, higher-order “features of
features” compared to the previous layer.

Next, all 96 units of the second max pooling
layer are fully connected to a one dimensional
hidden layer of 48 units. This set of connections
has the majority of the network’s trainable
weights (96 * 48 = 4,608).

Lastly, the ten possible digit classification values
are represented by ten more units
fully-connected to the 48 hidden layer units.
The ten activations are then adjusted by the “soft
max” (normalized exponential e​z​j​/Σe​z​k​) function
to emphasize the “winner” classification and
provide the result as a rough likelihood
percentage.

C.​ ​ Our Hardware Design

To support the first convolutional layer
processing, we needed to pass a set of 25
weights to the hardware, once for each feature

6

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

map. Then we can send many 5 by 5 pixel sets
of the image data plus a bias term to the
hardware and receive back a single value as the
weighted input for the feature map unit. These 5
by 5 matrix values for both the weights and
image pixel levels can be reshaped into a
one-dimensional vector with no loss of meaning,
as long as each vector has the same positional
mapping of elements to their respective
matrices. We extended the vector length to 26
elements to allow space for the bias term and to
use an even number, since the AXI Full
peripheral interface is 32 bits wide bits and we
chose to represent weights and unit activations
in a 16 bit fixed point format with 10 fractional
bits: FX [16 10]. This encoding was determined
experimentally to be suitable for our application,
as described in a later section. Therefore, we
needed to pack the 26 values for each vector into
13 pairs of 16-bit numbers and feed them into
the hardware. For later layers, we need 100 or 96
element vectors (5 by 5 by 4, or 4 by 4 by 6) or
48 (hidden layer to output unit). While these
were not attempted to be passed to the AXI
peripheral, it would be possible to break them up
into pieces that are each no more than 26
elements long. An alternative approach would
be to make the peripheral support large vectors
like this and provide a means to pass it smaller
vectors efficiently (e.g. use special address to
pass the length, or any write to a special address
terminates the vector at the current length).

We chose the AXI Full peripheral bus interface
to communicate with the main ARM processor
system, as we were familiar with it from earlier
class exercises and laboratory assignments and it
can support fast DMA memory transfers, which
we might want to utilize in the future. We
wanted to decouple the sending of weights (w)
and unit activation vectors (x), so we determined
that our AXI interface would monitor the access
write address and and use it to set a flag

representing the intended identity (and
corresponding register storage location) of the
vector. A zero in the address bit 2 represents a
unit activation vector, while a 1 in the bit 2 of
the address (e.g. base address + 4) indicates the
data is a weight vector. This flag is called
‘ab_sel’ in our VHDL statements, where the “a”
vector is the unit activation values vector and the
“b” vector is the connection weights vector.

We chose the AXI Full FIFO interface model
from class, as it allows us to send the data either
as separate pairs of values or through
many-value DMA burst without requirement to
identify the specific index of each vector
element. This means that we needed to
implement our own method of counting input
value pairs and storing each of them in the
correct activation or weight register. We did this
by implementing an element count ‘elem’ in a
“red clock” ​finite state machine​ (FSM).

7

When we have data available in the FIFO, we
enable reading it and latching it into an
appropriate register enabled by a demultiplexed
select line derived from the counter ‘elem’ and
the ‘ab_sel’ vector select flag from the write
address as described above.

Recalculation of the dot product is only
completed when the activation vector is sent and
all expected pairs of values received. The
outputs of the corresponding weight ‘w’ and
activation ’x’ register are fed to a signed
multiply operation resulting in a 32-bit product
with fixed-point FX [32 20] scaling. The
product terms are then added together using an
adder tree structure that requires five levels
(ceil(log2(26)) = 5). An early version of this
adder was un-clocked, but a staged version with
registers at each level was implemented.

When all of the input vector is received and the
calculations have had enough time to pass
through the staged adder tree, we enable the
result to be written into the output FIFO, which
then makes it available to the main processor
system to be read by the embedded application
software, which implements the other parts of
the network (ReLU function, max pooling,
softmax output) and unit/weight selection.

D. ​ Hardware Circuit Details

 ​Dot Product Accelerator AXI Full Peripheral
IP

We implemented our hardware design as a
packaged ​Intellectual Property (IP) that utilizes
the AXI Full interface of the Zynq chip family,
which supports interconnecting AXI Masters to
Memory-Mapped AXI Slave peripheral
co-processors in the ​Programmable Logic (PL)
fabric of the chip. Its structure consisted of the

Dot Product IP, interfaced with the input and
output FIFOs, and two Finite state machines, as
was previously used in class assignments. The
“Red” FSM is in charge of the ​irden, rst, owren,
elem, Ei, ab_sel, ofull, iempty signals. The
“Blue” FSM is in charge of the ​ifull, oempty
signals. The ​ab_sel​ signal is sourced from the
third bit of the ​axi_awaddr​ address of the AXI
interface. It is used as an address for the weights.

a.​ DOT PRODUCT IP

This is the heart of the Dot Product Accelerator
IP. It basically functions to produce the total
weighted input (z) to the non-linear function of a
higher-layer neuron unit. This IP design consists
of Registers, Input Register logic SEL, Red
Finite State Machine, and Dot Product Math.

By design, the weights (w) are first pulled from
the AXI bus and place in the input FIFO. The IP
reads these inputs from the input FIFO and
stores them into the designated registers. The
second batch of inputs from the FIFO, represent
the inputs (x), and are stored in their designated
registers. The registers are accessed based on
SEL circuit and sent into the Dot Product Math
Circuit. The output of this circuit is fed to the
output FIFO. The Red FSM issues the Elem
index value and Ei enable line that controls the
SEL circuit, which in turn enables specific

8

Registers for the inputs ​x and the weights ​w​ .
Each register is 16 bits, thus 2 registers are
enabled simultaneously for each pair of values
arriving from the 32 bit-wide FIFO and they are
J (26 in the current implementation) in number.
The 32 bit word from the input FIFO is split into
2 16 bits and sent to a separate register, either of
the input ​x ​ registers or the weights ​w ​ registers.

b.​ SEL

This is an input register selection logic circuit. It
functions as a Demultiplexer (1-to-J/2 Demux).
The input ​Ei​ , with an eight bit selection ​elem,
produces [J/2] outputs. These outputs are in two
sets: one for the inputs ​x,​ and another for the
weights ​w. The ​ab_sel​ input from the AXI block
when true allows a weights output to be true,
while the ​not ab_sel​ signal allows the other set
of outputs. That is, if ​ab_sel​ is 1, one of the
weights enable signal is activated, otherwise,
one of the other outputs is selected to be active.
The corresponding outputs of the Demux, based
on the ​Ei, Elem​ and ​ab_sel are sent to the
respective registers in the Dot Product IP. The
select line is only active if the general Ei signal
is active.

c.​ DOT PRODUCT MATH

The dot product math circuit consist of the
multiplier and adder tree. All [J] inputs, each of
16 bit values are multiplied by their
corresponding 16 bit weights value. This serves
as the inputs for the adder tree, to produce the
Dot Product Sum. The circuit was designed such
that the input will only overflow when either the
weights ​w​ or activations ​x​ are large, and in our
demonstration application, value are kept small.

The Adder tree consist of 5 stages, each with
registers. This ensures a potentially faster
operation through pipelining. The final output of
this circuit is sent to the output FIFO.

9

III.​ ​Experimental Setup

A.​ ​VHDL Testbenches

To test and validate our hardware design we
used two levels of VHDL testbenches. The
simple “tb_dotprod_id” test bench allowed us to
test the interior portion of the design without the
buffer FIFOs. We set up a data value pattern on
the simulated “IFIFO out” signal bus and just
used clock timing to determine when to change
the signal to other values to emulate the way the
main processor would feed in data to our circuit
through the input FIFO. Similarly, we would
monitor the output of the calculations that would
normally go to the input side of the output FIFO.
This level of testbench was useful to get the
register select circuit working that determines
where each of the sent vector elements would be
stored.

When we had development issues with our AXI
peripheral not cooperating with our main
processor, we used the tb_AXI testbench
provided to the class which implements most of
the AXI signals and bus interactions realistically
so we could identify timing and handshaking
issues. We used this testbench at length to
refine the “red” clock Finite State Machine
timing and interaction with the remainder of our
hardware design.

B.​ ​MNIST dataset

The MNIST dataset is a well-studied and easily
understood dataset used in the computer vision
and machine learning literature.​ This dataset
classifies handwritten digits 0-9​6​. With a total of
70,000 images, images are split between 60,000
images in the Training Data and 10,000 images
in the Evaluation Data. The writing is taken
from examples from hundreds of different
writers from two pools: high school students and
Census Bureau employees. None of the people
used for the training set were used in the
evaluation set. The training data is taken from a
set Common splits include the standard
60,000/10,000, 75%/25%, and 66.6%/33.3%.
During training, it is common for a subset of the
entire training set to be kept out of direct
network training and used for interim
performance evaluation. While the samples are
distinct, they originate from the same pool of
writers, so one can assume that the trained
network will do better with this reserved subset
that the evaluation set, which comes from a
completely different pool of writers. Our
objective is not to produce the best possible
handwritten digit classifier possible (or even the
best given the constraints on network size), but
to provide a test ground for hardware designs

10

useful for CNN acceleration, so we did not
formally test our network against the evaluation
set.

Each digit in the MNIST dataset is a 28 by 28
pixel image, but LeCunn et. al padded the
images to a size of 32 by 32 pixels to help the
network tolerate shifted images, but we used the
images as-is, and scaled the 0 to 255 intensity
values to a fixed-point range of -1.0 to +1.0
when loading into our network.

Each image in the training and evaluation sets
have associated classification labels. In other
words, the “correct” interpretation or at least the
intended meaning of the digit (some examples
are quite sloppy, as you might expect from a
wide variety of people).

(From Nielsen​7​)

C.​ ​ Neural Network Training

At first, we attempted to use sample Python code
from Michael Nielsen’s book ​Neural Networks
and Deep Learning​7​. While the code ran and
produced weights, when we imported these into
our C program, it did not produce reasonable
results, perhaps due to a transposition effect that
we did not resolve. We implemented our own
back-propagation functions in the C code to train
the network weights and bias values. We used

some common techniques in the field of neural
networks to improve the training process: we
adjusted the learning rate from a more
aggressive starting rate to a more gradual rate
over the training process. We also implemented
weight decay where we reduce the magnitude of
all weights by a small percentage if the average
size of all weights (as defined by root mean
square) is above a threshold value. This keeps
most weights in the -0.5 to 0.5 range and helps
prevent over-generalizing from specific training
examples. We used the first 50,000 images of
the training set for the training, and the last
10,000 images in the training set as our
“validation” set. After many minutes of training
on a high-specification laptop (Intel Core i7), we
could achieve validation accuracies around
98.0%. +/-0.6% out of 1000-randomly selected
examples from the 10,000.

As we intended to implement our dot product
accelerator in VHDL, we wanted to have the
neural network to perform well with fixed-point
numbers. We experimented with various
encodings, and counted cases where the
weighted input calculations overflowed the
allowed encoding range of the number format in
question. Because we trained our network using
weight decay, the majority of weight values
were fairly small, preventing overflow. We
determined we had no overflows for a large
sample of inputs when we used an FX [16 10]
encoding and still keep fairly close to our
original accuracy.

After training the network on a PC, the code and
weights were copied into the Xilinx SDK
environment. The C program for the embedded
ARM processor system was adjusted to read an
SD card for the the training/validation image set,
image labels. The weights and network
definition file was formatted as an include file
that defines the network specification as a large
hard-coded string. This string is parsed just as

11

an external file would be. In the future it would
be convenient to make this network and weight
configuration information readable also from the
SD card.

IV.​ ​Neural Net Testing and Results

Our network implementation in C ran on our Zynq
Zybo board with an SD card holding the image
database and image classification labels. The
application reads the card on startup and buffers it in
DDR RAM. For timing purposes, we prepared a
routine to process all 10,000 images in our validation
data set with no planned output to the console that
would rob performance. The classification accuracy
was tracked (number “right” according to the label
versus the total). Timing was measured by clock
cycle counts returned by the XTime_GetTime()
function and verified to be accurate by stopwatch.

Baseline performance for original “random”
memory-access pattern version neural network
(software only):
9832 out of 10000 correct, or 98.32% in 190.191 sec.

Performance for AXI dot product IP
hardware-utilizing neural network:
9832 out of 10000 correct, or 98.32% in 183.854 sec.
(Note: the vectors were loaded into the AXI
peripheral two elements at a time, not with DMA.)

Performance for streamlined dot-product structured
neural network (software only):
9832 out of 10000 correct, or 98.32% in 128.728 sec.

V. Conclusions

While we were able to complete a hardware design
that could take advantage of parallel processing, it is
clear that overall system performance requires careful
consideration of of all operations, including data
transfers into and out co-processing units. With
conventional explicit (non-DMA) 32-bit data writes,
our dot product hardware speed boost was not
sufficient to repay the time needed to set up the input
data, at least compared to software-only dot-product
optimized C code compiled for the ARM core in our

Zynq chip, although our hardware implementation
was was slightly faster than a more simplistic
software implementation with a more random-access
memory pattern.

Our overall application performance is quite
impacted by the inherent requirement to pass large
vectors of data out to our hardware peripheral
repeatedly. Because of the way neural networks are
configured, the same input pixel or intermediate
activation level must be assessed many times to
determine the state of a higher layer unit. In the case
of our small network, the same input pixel (away
from the image edge) would be sent as part of an
activation vector one hundred times (!) during
first-layer processing to the hardware because it is a
member of twenty-five different receptive field
configurations for each of the four feature maps. In
the second layer of our network, the repetition is even
worse with six feature maps, resulting in most
activation values being sent 150 times. Obviously it
would be better if the data could be sent fewer times.

Another aspect to fast hardware performance only
partly addressed in our hardware design is pipelining.
We employed a coarse pipeline structure in our
calculation subsystem, but did not design the input
buffering registers to be fully pipelined. However,
pipelining beyond use of input and output FIFOs may
not be as useful since the nature of the dot product is
already sequential, so a fast multiply-accumulator
approach might be able to keep up with the AXI bus
speed limitations.

Our design is partially parameterized with VHDL
generic parameters (e.g. be able to request a specific
implementation of any length vector). Specifically,
the input buffer registers, multipliers, and “red” clock
FSM all are generic configurable using “for ..
generate” and “if … generate” statements, but the
adder tree subsystem is not at this time. In principle
adder tree could be made generic or use existing
adder tree hardware blocks.

Given more time, we could have enjoyed exploring a
variety of speed enhancements:

1. DMA memory transfer for weight sets and
especially activation data vectors. These

12

would become increasingly useful with
larger vectors, such as the 96 input weights
needed for each fully-connected hidden
layer unit. We begun development of DMA
transfer routines but did not find time to
debug and test them.

2. Increased parallelization: CNNs typically
have multiple feature maps tied to an earlier
layer, each with a distinct set of shared
weights. After sending a particular 5x5
receptive field to the hardware, that vector
could have been used in parallel dot product
calculations for each feature map. The set
of results could be read back in a short burst.
While our small CNN only had four feature
maps in one layer, and six in another, some
CNNs have many more, so higher levels of
parallelization would be very beneficial.
This would require an array of weight
vectors to be configured and accessed
repeatedly.

3. Explore use of reconfigurable partitions with
fixed lookup tables to implement
“distributed arithmetic” methods of
multiplying varying data by constant factors,
which in our case are the network
connection weights.

4. Expand the design to work with entire image
sets or at least large strips of the input image
at a time to reduce the high rates of data
transfer repetition described above. The
hardware could index within hardware
memory buffers to fetch values repeatedly as
needed from the sliding receptive field and
buffer the calculation results in other
hardware memory where it could be reused
by later calculations without requiring slow
communications back and forth with the
main processor. This would remove the
need to resend the same pixel/activation
value as many as 150 times in our small
network and manyfold more in even larger
networks.

Acknowledgements​ .

The authors would like to thank Prof. Llamocca for
debugging assistance and design suggestions and the

opportunity to explore interesting applications of
FPGAs. The authors also acknowledge Michael
Nielsen for his very accessible introduction to neural
networks, including CNNs.

VI. References

[1] Andrey Kurenkov, “A brief History of
Neural Nets and Deep
Learning”.[​http://www.andreykurenkov.com/writ
ing/a-brief-history-of-neural-nets-and-deep-learn
ing/​]

[2] S. Sahin, Y. Becerikli and S. Yazici, “Neural
Network Implementation in Hardware Using
FPGAs,” Department of Computer Eng., Kocaeli
University, Izmit ,Turkey.

[3] Daniel Llamocca, “Notes - Unit 2”,
ECE495/595 class handout, Fall 2016.

[4] LeCun, et. al. “Gradient Based Learning
Applied to Document Recognition”, Nov. 1998,
Proceedings of the IEEE.

[5] ​http://deeplearning.net/tutorial/lenet.html​,
copyright 2008--2010, LISA lab.

[6] ​The MNIST database of handwritten digits

[7] Michael Nielsen, Neural Networks and Deep
Learning, Jan 2016, published as an online book:
http://neuralnetworksanddeeplearning.com/index
.html

[8]
http://cs231n.github.io/convolutional-networks/

13

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/
http://deeplearning.net/tutorial/lenet.html
http://yann.lecun.com/exdb/mnist/
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://cs231n.github.io/convolutional-networks/

