CPU Multi Threaded
Dual-Gradient Projection for
Embedded MPC

ECE 5772 - High Performance Embedded Programming

Joseph Volcic

Overview of Model Predictive Control (MPC)

e Model Predictive Control is a control strategy for dynamic systems. MPC solves for optimal inputs to a system by
predicting its future behavior using a mathematical model and determining the best sequence of control actions that
minimize a cost function while respecting system constraints.

<
NMPC PID/LQR/etc. \/l PC
e B et
) | | e | |
! [[| [l |
: : . Future ; : : w I . . . LU y
| i output 1 | ——» Optimization ——— System |—¢—
| I I I I I
Set-point 4 - L . L . |
| | | | | | |
I
! L L : I :
saaviaad)l
I\I(td.\l;l((l ! : Optimal : : : | :
outpu o .
P R e | Steady-state ' Model ,
Past :_ : : inputs I \
inputs ! | [| | I I
| | | > |

> — e ——— — —— — o— -

|
I
| | |
k-1 k k+1 k+2 k+N k+N+1 k+M ?
Time

Overview of The QP Problem

Consider the following finite-time optimal control problem formulation for MPC (bottom left). Using quadratic costs, we can
repackage the optimal control problem on the left as a convex quadratic program (QP) (bottom right)

N—1
Cost
Functon —— min EN(ZUN) + Z Kk(xk,uk)
Z
Current R=0 1 / /
state =~ —S.t. xg =P Quadratic Costs leln 52 Mz+ (Cp+g)'z
Try1 = ATk + Brug + fk st. Gz<Ep+b
Dynamics
and] Fere + Gruk <
onstraints ’ / /
k=0 N —1 zé[uo...uN_l] c R™
5 5% 5§
Terminal State 1
Constraints —— Fnyzy < cn EN(:B) — '2—$/QNCC + q;\f‘flj + SN
(good for

stability)

Overview of the GPAD Algorithm

e Normally, solving the QP for MPC is incredibly resource-intensive (active set, interior point methods, explicit

MPC), and thus unfit for embedded applications.

e However, in “Simple and Certifiable Quadratic Programming Algorithms for Embedded Linear Model Predictive
Control” (Bemporad, Patrinos), a dual fast gradient-projection approach (GPAD) is introduced for solving QP
problems in a lightweight manner, fit for embedded systems, and can be easily executed on “p” parallel

processors. The four steps are shown below:
1
min —2'Mz+ (Cp+g)'z
z 2 .
st. Gz<Ep+b wz/—yl/"i_ﬂl/(yl/ _yl/—l)

21/ :L_MGU}VJ_ gp
Zo =1 =0,)%, 1 + 0,2,

Yv+1 = [wu +HGLz, i‘F pD]+

Source: A. Bemporad “Model Predictive Control”

Step Flop Count
(4a) 3m

(4b) 2n,Nm
(4c) 3m

(4d) 2nyNm +m
Total | 4nyNm + Tm

MPC Optimization Problem

e This work will focus specifically on
the battery changing problem.
However the approach will be
generalized to any MPC.

e In the battery charging case we
have to abide by a couple rules.
Current into a cell must equal
current out of a cell, cell max
voltage, cell min voltage. These
are all defined in the M_G and
G_L matrices.

Active Balancer

Lo

et

Unbalanced Battery Cells

Similar SOC

Proposed Methodology for Optimization

e Partitioning the data into smaller section allows us compute parallel section of
data.

e Running multiple steps of the algorithm at the same time.
e Matrix Compression reduces the total number of data elements operated on.

e Parallel SAXPY, however the data is too small to see benefit from this.

Optimization Methodology -
Sparse Matrix-Vector Multiplication

Matrix Vector multiplication is very
similar to completing the dot product
on multiple rows of data.

To parallelize matrix vector
multiplication the matrix can be
partitioned into multiple chunks for
threads to compute simultaneously.

Built using a Blas framework and
pthreads. Pthreads allows me to
calculate how to split the data before
computation.

Thread 2

r=e====-"1

Optimization Methodology - Matrix Compression

e Large matrices in step2 = = = .
and step 4 can be
compressed to remove - - .
zero elements.

e The compressed array
is represented as two
array to maintain data
and position.

e Padding is applied to
rows with less elements = a . =
to ensure each row has . nyN a a a

the same number of
elements. (Important for
GPU operations)

Non-Compressed Matrix

HEEEEENEENEESEEE NN EEE EEEEN EY

Compressed Matrix

Proposed Methodology - Parallel Steps

e Recall the GPAD algorithm:
Upon direct observation, we Wy =Yy + 51/ (yy — yy_l)

notice that some steps

further ahead do not depend e e
on the results calculated in “v gP
previous steps. N

e We can draw up a directed

acyclic graph to represent 2 =(1—8,)z + 6.2
tasks can be done in v (V) v—1 VAU

parallel, and which need to T ——
wait for others to be Yv+1 — [’U]V -+ GLZV -+ pD]+
completed.

e This problem cannot be
pipelined due to each steps
dependence of completion
of the previous step.

Results - Testing Methodology

Testing Machines

Jeston Nano Desktop
Cores: 4 Cores: 8
Threads: 4 Threads: 16

Clock Speed: 1.9 GHz Clock Speed: 3.2 GHz

Results - Parallel Steps Jetson

. . . Jetson Nano Parallel Fork
Running multiple steps in

parallel provided a slight
speed up, however nearly
negligible.

Two implementations
were tested. Running
steps 1 and 2a in parallel
with steps 3 and 4 in
parallel. As well as

. 0°0°0°°°°°0°0°60c90° S .
running only steps 3and 4 > + > ¥ 9 © V99 S
in pal’a”el_ Number of Variables (Nu * N)
Sequential Single Fork Double Fork

BN W e O N

o

Duration (seconds)

Speed Up From Sequential

1.02
1.0

[E=

0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91

Jetson Nano Parallel Fork

P P LS LSEL LSS SO
A R AR O R RO RO R

g
Number of Variables (Nu * N)

m Sequential m Single Fork m Double Fork

Results - Parallel Steps Desktop

e The same tests were
performed on the desktop,
and the sequential version out
performed both parallel

Desktop Parallel Fork Desktop Parallel Fork

14 12
versions.
12 _ 4
e The steps the can be run in s E08
parallel are very small causing L % 06
more overhead then 65 5
computation gain. s § 5%
) °
2 g 02
wv
e Due to the lack of o §
performance this was cut in 100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 Number of Variables (Nu * N)
future tests. Number of Variables (Nu * N)

m Sequential m Single Fork m Double Fork

e SEQUENEIA] s SiNgGle Fork Double Fork

Results - Sequential Matrix Compression Jetson

Compressing the
matrices and then
performing multiplication
offered around a 9 times
speed up on the Jetson.

Jetson Nano Compressed GPAD

__.—-—-'/

100 300 500 700 900 1100 1300 1500 1700 2100 2500 3000

Number of Variables (Nu * N)

w— SeQueNtial

s SEQUENt Al Compressed

35

30

25

20

15

10

Duration (seconds)

Speed Up Over Sequential

100
200
300
400

Jetson Nano Compressed GPAD

O O 0 0 0090 00 00 O o 9
O O OO0 OO0 O O OO0 O O O O
N ORN®OMOO A NMT WM O~ O

o o A

m Sequential m Sequential Compressed

2100 =
2300 ==
2500 ==
2700 ==
3000 ===
3300 ==

Speed Up Over Sequential

Results - Parallel Matrix Multiplication Jetson

30

25

20

15

10

Running the matrix vector

multiplication in parallel lead to a
significant additional speed up,
around 2-3 times faster

Testing was done with 4 threads

100 300 500 700 900 1100 1300 1500 1700 2100 2500 3000
Number of Variables (Nu * N)

Jetson Nano Compressed GPAD

100
200
300 =
400
500

m Sequential

HHH
L1

o O O © O
o O O O O
O 0 = N m

o o o -

1

(=]
(=]
©

700 =

w Sequential Compressed

ll

il a

o
o
<
-

|
|

[=]
o
0
-

ol olh nld nlh nd all B J
0O 0O 0 0O 0O O O 9O
O O O O O O O O
ORNR O A MmO N~NO
™ = = NN N NMm

Parallel Compressed

w——Sequential

3300

Jetson Nano Compressed GPAD

Sequential Compressed

35

30

25

20

15
10

Duration (seconds)

Parallel Compressed

Jetson Nano Compressed GPAD

100 300 500 700 900 1100 1300 1500 1700 2100 2500 3000
Number of Variables (Nu * N)

Sequential Compressed Parallel Compressed

Duration (seconds)

Results - Sequential Matrix Multiplication Desktop

° Similar to the Jetson
there was around a 10

times speed up after 12
matrix compression. _ 10
S s
o
3
g 6
o
Q
2 4
©
]
& 2

1

2

3

Desktop Compressed GPAD

4

5 6

m Sequential

7

8 9 10 11 12 13 14 15 16 17

u Sequential Compressed

Desktop Compressed GPAD

|

1000
1500
2000
2500

3000

&

4000
4500

Qo
©o

8 8 8
R’ A

6500
7000
7500
8000
8500

Number of Variables (Nu * N)

— Sequential

e SEQUENTIAl Compressed

10000

35
30
25
20
15
10

Duration (seconds)

Speed Up Over Sequential

Results - Parallel Matrix Multiplication Desktop

Desktop Compressed GPAD

70

60

50

40

30

20

10

Running the matrix vector
multiplication in parallel lead to a
significant additional speed up,
around 3 - 6 times faster

Testing was done with 8 threads

O O O ©O O © © O © O O ©
© O O O O O © O © O O O
SO 1 O W © W O 1 O 1 O !
o - N N ®m®®m F F H N © ©

Number of Variables (Nu * N)

e SEQUENTIA] s SequeNtial Compressed

Desktop Compressed GPAD

RN

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m Sequential m Sequential Compressed Parallel Compressed

7000 ||
7500

35
30
25 8
[—4
o
20 g
o
15 §
&
105
(=)
5
0
Qo O o
o O o
8 & 8
-

parallel Compressed

1000 4

1500 |

2000 ||
2500

Desktop Compressed GPAD

\

o O O © © © 9O O
0 O O O O O © O
o N ©O n O v O wn
m MM < < N N O O

Number of Variables (Nu * N)

7000
7500
8000
8500
10000

3.5

2.5

1.5

0.5

Duration (seconds)

Conclusions

e CPU multi-threaded acceleration of GPAD demonstrates significant
performance improvements over traditional a single thread CPU
implementation.

e Optimizations like matrix compression, data partitioning, are key to achieving
real-time performance.

e Future work includes improving the parallel steps approach, as well as
comparing the GPU and CPU multi-threaded results.

