CPU Multi Threaded
Dual-Gradient Projection for
Embedded MPC

ECE 5772 - High Performance Embedded Programming

Joseph Volcic



Overview of Model Predictive Control (MPC)

e Model Predictive Control is a control strategy for dynamic systems. MPC solves for optimal inputs to a system by
predicting its future behavior using a mathematical model and determining the best sequence of control actions that
minimize a cost function while respecting system constraints.
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Overview of The QP Problem

Consider the following finite-time optimal control problem formulation for MPC (bottom left). Using quadratic costs, we can
repackage the optimal control problem on the left as a convex quadratic program (QP) (bottom right)
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Overview of the GPAD Algorithm

e Normally, solving the QP for MPC is incredibly resource-intensive (active set, interior point methods, explicit

MPC), and thus unfit for embedded applications.

e However, in “Simple and Certifiable Quadratic Programming Algorithms for Embedded Linear Model Predictive
Control” (Bemporad, Patrinos), a dual fast gradient-projection approach (GPAD) is introduced for solving QP
problems in a lightweight manner, fit for embedded systems, and can be easily executed on “p” parallel

processors. The four steps are shown below:
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Source: A. Bemporad “Model Predictive Control”
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MPC Optimization Problem

e  This work will focus specifically on
the battery changing problem.
However the approach will be
generalized to any MPC.

e In the battery charging case we
have to abide by a couple rules.
Current into a cell must equal
current out of a cell, cell max
voltage, cell min voltage. These
are all defined in the M_G and
G_L matrices.

Active Balancer

Lo

et

Unbalanced Battery Cells

Similar SOC



Proposed Methodology for Optimization

e Partitioning the data into smaller section allows us compute parallel section of
data.

e Running multiple steps of the algorithm at the same time.
e Matrix Compression reduces the total number of data elements operated on.

e Parallel SAXPY, however the data is too small to see benefit from this.



Optimization Methodology -
Sparse Matrix-Vector Multiplication

Matrix Vector multiplication is very
similar to completing the dot product
on multiple rows of data.

To parallelize matrix vector
multiplication the matrix can be
partitioned into multiple chunks for
threads to compute simultaneously.

Built using a Blas framework and
pthreads. Pthreads allows me to
calculate how to split the data before
computation.
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Optimization Methodology - Matrix Compression

e Large matrices in step2 = = = .
and step 4 can be . . . .
compressed to remove - - .
zero elements.

e  The compressed array
is represented as two
array to maintain data
and position.

e Padding is applied to
rows with less elements = a . =
to ensure each row has . nyN a a a

the same number of
elements. (Important for
GPU operations)

Non-Compressed Matrix
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Proposed Methodology - Parallel Steps

e  Recall the GPAD algorithm:
Upon direct observation, we Wy =Yy + 51/ (yy — yy_l)

notice that some steps

further ahead do not depend e e
on the results calculated in “v gP
previous steps. N

e We can draw up a directed

acyclic graph to represent 2 =(1—8,)z + 6.2
tasks can be done in v ( V) v—1 VAU

parallel, and which need to T ——
wait for others to be Yv+1 — [’U]V -+ GLZV -+ pD]+
completed.

e  This problem cannot be
pipelined due to each steps
dependence of completion
of the previous step.




Results - Testing Methodology

Testing Machines

Jeston Nano Desktop
Cores: 4 Cores: 8
Threads: 4 Threads: 16

Clock Speed: 1.9 GHz Clock Speed: 3.2 GHz




Results - Parallel Steps Jetson

. . . Jetson Nano Parallel Fork
Running multiple steps in

parallel provided a slight
speed up, however nearly
negligible.

Two implementations
were tested. Running
steps 1 and 2a in parallel
with steps 3 and 4 in
parallel. As well as
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Results - Parallel Steps Desktop

e  The same tests were
performed on the desktop,
and the sequential version out
performed both parallel
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Results - Sequential Matrix Compression Jetson

Compressing the
matrices and then
performing multiplication
offered around a 9 times
speed up on the Jetson.

Jetson Nano Compressed GPAD
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Speed Up Over Sequential

Results - Parallel Matrix Multiplication Jetson
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Running the matrix vector

multiplication in parallel lead to a
significant additional speed up,
around 2-3 times faster

Testing was done with 4 threads
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Results - Sequential Matrix Multiplication Desktop

° Similar to the Jetson
there was around a 10

times speed up after 12
matrix compression. _ 10
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Speed Up Over Sequential

Results - Parallel Matrix Multiplication Desktop

Desktop Compressed GPAD
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Running the matrix vector
multiplication in parallel lead to a
significant additional speed up,
around 3 - 6 times faster

Testing was done with 8 threads
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Conclusions

e CPU multi-threaded acceleration of GPAD demonstrates significant
performance improvements over traditional a single thread CPU
implementation.

e Optimizations like matrix compression, data partitioning, are key to achieving
real-time performance.

e Future work includes improving the parallel steps approach, as well as
comparing the GPU and CPU multi-threaded results.



