Efficient CPU-Multi-Threaded Dual

Gradient-Projection Algorithm for Embedded Linear
Model Predictive Control

Luke Nuculaj, Joseph Volcic
Department of Electrical and Computer Engineering
Oakland University
Rochester Hills, MI, USA
e-mail: {lukenuculaj | volcic }@oakland.edu

Abstract—This work considers the dual gradient-projection
algorithm (GPAD), a lightweight quadratic programming (QP)
solver for real-time embedded model predictive control (MPC)
applications, and investigates the use of parallel processors in
expediting its computation. Furthermore, we expand on the
initial parallel implementation by taking into consideration the
advantages that come with matrix compression. OQur findings
demonstrate that storing linear time-invariant (LTI) matrices in
a compressed format and processing data in parallel reduces
computation time, achieving a 61.0x speedup on a desktop
computer, a 20.1x on a Jetson Nano compared to a sequential
non-compressed CPU implementation.

I. INTRODUCTION

As time has progressed, model predictive control (MPC)
has proven to be a powerful control methodology, regarded for
its ability to synthesize optimal control inputs while factoring
in system constraints [1], [2]. Originally, MPC was widely
adopted by chemical plants and oil refineries, where it saw
initial success controlling multiple variables. As computational
power has become more affordable, aerospace and automotive
industries turned their attention to MPC as an attractive control
technique to be implemented in high-speed environments.
Specifically, an MPC algorithm that can run in real-time on
an embedded platform and provide solutions within short time
frames.

However, compute capability has recently plateaued due to
the limitations the Moore’s Law and Dennard scaling, hitting
an insurmountable frequency and power-density barrier [3],
[4]. To this end, there has been extensive research in the realm
of using multiple cores — specifically, graphics processing units
(GPUs) — to accelerate real-time embedded computing [5]-[8].
As for MPC, there have been various sub-problems tackled
by GPU implementations in the literature. For instance, [9]
in on parallelizing a warm-started, preconditioned conjugate
gradient solver for computing the optimal trajectories of a
simulated robot arm, which saw up to a 10x speedup compared
to the CPU implementation. [10] aimed to expedite the com-
putations of nonlinear evolutionary MPC on a GPU as applied
to the control of pneumatically actuated continuum robot. The
authors’ experimental results, much like [10], also note a 10x
speedup as compared to the sequential implementation.

Our work leverages the parallel capabilities of CPUs to
implement the accelerated dual gradient projection algorithm
(GPAD) [11], [12]. The GPAD algorithm is a recent de-
velopment in QP solvers for MPC, hailed for its speed,
simplicity, and small memory footprint. Section II constructs
the convex QP problem as applied to linear MPC; thereafter,
Section III summarizes the main steps of the GPAD algorithm,
highlighting how we prepare the linear MPC construction
for solving. Section IV considers a preliminary, step-by-step
evaluation of the number of floating-point operations (flops)
and the percent parallelism for the GPAD algorithm, identi-
fying relevant bottlenecks. Subsequently, the various parallel
approaches for each step are described (a linear, time-invariant
system is assumed), accompanied by a directed acyclic graph
(DAG) used for parallel task scheduling. Section VI compares
the average execution times of the various parallel CPU
implementations to one another as well as to the sequential
GPAD implementation. Additional profiling metrics such as
optimal thread-block usage and memory footprints are also
considered. This work closes out with a discussion of the
major takeaways and future work in Section VIIL.

II. LINEAR MPC

The formulation of the receding-horizon optimal control
problem for MPC is described by the following

N-1
Lomin o Oy(ey) + k}% Cr (ki) (1a)
st. zg=p (1b)

Tpy1 = Apzi + Brug (lc)

Frxp + Gruy, < ¢y, (1d)
k=0,.,N—1 (le)

Fyxy <cen (1f)

where p € R™= is the current state, u, € R™ is the control
input at a particular time step k, and z, € R™= is the state. N
is the prediction horizon, which is how many time steps into
the future the MPC considers. Our stage and terminal costs
L (z,ug) : R* x R™ — R and £y (zy) : R™ — R make

up our cost function, and for linear MPC, they are assigned
to be quadratic functions like so

1
(o, we) = 5 [z] {%’“ ng] [i:] (2a)
L T
In(zn) = geNQnan (2b)
where weight matrices Qr, Qn € S'}*, Ry € ST,
Defining our optimization variable =z =
[uOT uf - UL_J € R™N we can apply our

stage costs (2) to the optimal control problem in (1) to get

1
2* = arg min izTMz +(Cp+g)2 (3a)

st. Gz<Ep+b (3b)

where the Hessian matrix M € StﬁN, C € RexmlN g ¢
R™, G € RN E ¢ R™*"= and b € R™. It should
be noted that in the scenario where the model is linear time-
invariant (LTI), several matrices in (3) can be computed offline
— we will revisit this idea later on.

III. DUAL GRADIENT PROJECTION ALGORITHM

The crux of the GPAD algorithm was first developed in
[13], but first applied to MPC in [11], [12]. For brevity, the
derivations of these steps are omitted from this work, and said
derivations can be located in the original literature. The steps,
as laid out in [12], are the following

wy = Yy + B (Yo — Yo—1) (4a)
2, = —Mgw, — gp (4b)
2, =(1-0,)z,-1 + 0,2, (4¢)
Y41 = [w, + G2, + ppl+ (4d)
Yo=yY-1=0, 2.1 =0
where y € R™ is the dual vector, Mg := M-1GT,
gp == M~YCp+g), GL = 1G, pp = —1(Ep+b),

the iteration count v € N, and L is an upper bound on the
maximum eigenvalue of H := GM —1GT: this work considers

the Frobenius norm || H|| p = /> _; |H,,|°. 6, and 5, are
scalar quantities generated by the following recursions:

NGES
2

Opi1 = (5a)
By = 0,001, —1) (5b)
00 = 9,1 = 1. (SC)

The GPAD is an iterative algorithm, meaning that (4) is run
repeatedly until certain termination criteria are satisfied. The
appeal of the GPAD algorithm, as [12] points out, is that we
may designate a fixed, worst-case number of iterations N, € N
that agrees with the sample time of the MPC controller. Such a
limit is paramount for implementation in real-time embedded
systems that must be equipped to handle worst-case scenarios.
Consider Algorithm 1 — the listing for the algorithm with fixed
N,.

In the case of LTI systems, matrices Mg and G can be
computed offline and stored in a non-volatile memory source

Algorithm 1 GPAD with fixed number of iterations

1: procedure GPAD(N,)

2 init: yo =y_1 =0, z2_1 = 0;

3 for v =0to N, do

4: compute w,, 2., Yo+1 as in (4);

5 end for

6 stop: z, = primal solution, y,+1 = dual solution;
7: end procedure

for easy online access. In fact, the only matrices that need
to be computed online in all circumstances are pp and gp,
which are dependent upon the initial state p. As stated in
[12], the main computational workload comes from (4b) and
(4d), which are matrix-vector multiplications on the order of
O(nyNm). In the following section, we will confirm this
claim with a comprehensive flops comparison as well as an
evaluation of the level of parallelism of (4).

IV. METHODOLOGY
A. Preliminary Analysis

To find a starting point for the parallel CPU implementation,
an investigation of the preliminary flops and percent paral-
lelism is vital in identifying easily parallelizable bottlenecks.
For clarity, a flop is defined as a fundamental arithmetic
operation (addition, subtraction, multiplication, and division)
on floating-point values.

(4a) consists of a vector subtraction, a scalar multiplica-
tion, and a vector addition on vectors € R™. Simply put,
the subtraction is m flops, the scalar multiplication of the
difference is m flops, and the vector addition is m flops,
totaling 3m flops required for (4a). In fact, (4c) also requires
3m flops. As for (4b), there is a matrix-vector multiplication
followed by a vector subtraction. Note that we can store
the negated version of Mg in non-volatile memory, avoiding
extraneous online scalar multiplications. Recalling the sizes
of the matrices and vectors from Section III, the matrix
multiplication is essentially a repeated vector dot product over
each of the rows, resulting in a flop count of 2n, Nm —n,N.
Adding in n, N flops for the vector subtraction, and we see
that (4b) requires 2n, Nm flops. For (4d), the matrix-vector
multiplication requires 2n, Nm — m flops. Factoring in the
two vector additions, the total flop count for this step is
2n, Nm + m flops. As can be seen, these findings align with
the claim set forth by [12] regarding time complexity on (4b)
and (4d). For convenience, these results are listed in Table 1.

TABLE I

GPAD FLOP COUNTS
Step Flop Count
(4a) 3m

(4b) 2nyNm
(4¢) 3m

(4d) 2nyNm +m
Total | 4ny,Nm + Tm

As for the level of parallelism, the operations we use in
(4) are scalar multiplications, vector additions/subtractions,

matrix-vector multiplications, and a projection onto the non-
negative orthant in (4d) (in Layman’s terms, an elementwise
ReLU operation on the input vector). Each of these opera-
tions have a percent parallelism of 100%, meaning there is
absolutely no interdependence between the computations for
distinct output elements. Phrased differently, in ideal condi-
tions, the results for each step in (4d) can theoretically be
computed at once. So, we can identify our largest computa-
tional bottlenecks residing with (4b) and (4d). The following
subsections introduce the various parallel approaches explored
by the authors for (4).

B. Parallel Approaches

Per the recommendation of [12], (4) “can easily be executed
on m parallel processors”. To leverage parallel processors
for linear algebra operations, we begin by assigning one
thread to compute a distinct section of the output data for
each step. This approach provides an intuitive starting point
for parallelization and highlights the division of work across
threads. The operations involved in steps (4a) and (4c) are
straightforward SAXPY operations on non-constant vectors
with a with a relatively short length due to the column heavy
nature of the matrices. Consequently, we did not heavily
explore parallelizing SAXPY, as its relatively short vector
lengths offer limited potential for speedup.. Matrix-vector
operations in steps (4b) and (4d) account for the majority of
the algorithm’s workload, making them strong candidates for
parallelization.

The matrices remain constant throughout the duration of
the algorithm. Leveraging this property, we can partition the
data into smaller chunks before launching the MPC. This
preprocessing step eliminates the partitioning overhead during
runtime, improving efficiency. This is advantageous because it
allows us to remove the partitioning overhead during runtime.

Thread 1

Fig. 1. Data Partitioning for Matrix Vector Multiplication

A further improvement to matrix vector multiplication can
be made by compressing the sparse matrices into a compact
matrix using ELL compression. ELL compression removes all

zero elements and stores the column index of each remaining
element. For matrices with a variable number of non zero
elements per row, rows with less non zero elements are
padded to match the length of the longest row. Eliminating
zero elements significantly reduces computational workload
but comes at the cost of unaligned data access. However, since
the matrices are predominantly sparse, the impact of unaligned
access is minimal.

i
ma

Fig. 2. Matrix Data Compression.

Upon closer examination of GPAD, it becomes clear that
multiple steps can be computed concurrently. By assigning
threads to these steps, we can reduce the total number of
phases required for a prediction, further enhancing parallel
efficiency. Using threads to calculate multiple steps at the same
time has potential for speedup, by reducing the total number
of phases GPAD takes to compute a prediction along with
parallelizing work.

Lo

Step 1

Step 2a

ime

Fig. 3. GPAD Parallel Step Computation.

V. IMPLEMENTATION

For proof of concept, the theoretical parallel implementa-
tions discussed in Section IV-B are implemented in C++ —

using the pthreads standard library for parallelization — and
executed on a NVIDIA Jetson Nano and a Desktop Computer,
the Jetson was equipped with 4 cores, off of a 1.9 GHz clock
speed. The desktop was equipped with 8 cores, off a 3.2 GHZ
clock speed. The maximum number of cores was assigned to
each device, and the parallel and sequential implementations
were compared in the section VI

VI. RESULTS

The parallel design philosophy adapted to this problem did
not meet the expected performance predicted in the prelimi-
nary analysis. Launching and joining groups of threads needs
to be managed efficiently to achieve peak performance. This
becomes highly apparent when assigning threads smaller tasks,
such as SAXPY seen in steps (4b) and (4d). As indicated in
Figures 4 and 5, which display the speed-up of multi-threading
steps of the algorithm, at best a small speed-up was achieved
on the NVIDIA Jetson Nano; however, the average case led
to a net slowdown of the algorithm. For smaller tasks, such as
SAXPY, the overhead dominates the execution time, negating
any potential gains from parallelism.

Jetson Nano Parallel Fork

S O & .& . & .» P LS PP
00@%0(00;\0%0%0@0»\&

1.02
1.01

0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91

Speed Up From Sequential

O L O
O S
\',))'yb‘ "3

Number of Variables (Nu * N)

mSequential m Single Fork m Double Fork

Fig. 4. Jetson Nano GPAD Speed Up from Parallel Step Execution.

Both optimization techniques operating on larger partitions
of data performed as expected. Reducing the total amount of
work done by a single thread is a generally good technique
for decreasing the runtime of a function. Similarly, reducing
the amount of work done by a thread when operating on
large data sets also produces a significant speed-up. This is
demonstrated in Figures 6 and 7, which compare the optimized
implementations for larger data partitions on the Jetson Nano
and desktop platforms. In all cases a significant speed-up can
be observed.

The performance analysis of the parallel SAXPY and
Matrix-Vector Multiplication highlights the critical role of
balancing task granularity with thread execution efficiency.
While smaller tasks, such as SAXPY, suffer from significant
overhead due to frequent thread management, larger tasks
benefit from parallel execution as the overhead becomes

Desktop Parallel Fork

1.2
_ 1
o
k=1
=
g 08
o
7]
(%]
5 0.6
>
o
30— 0.4
el
@
g 0.2
wy
0
Number of Variables (Nu * N)
m Sequential m Single Fork m Double Fork
Fig. 5. Desktop GPAD Speed Up from Parallel Step Execution.
Jetson Nano Compressed GPAD
30
B
c
@
g 20
&
g 15
6
510
-
wv
O AR mEN AR mRR AN W RAR mER mAd mEE WE §l @ LU LU LU O LI |
0 0 000 000000 00090 9000 90990 999
SRRARFRERIFEERIAIABRISan~am
o e e e e e NN NN M
m Sequential m Sequential Compressed m Parallel Compressed
Fig. 6. Desktop GPAD Speed Up from Parallelization and Compression.
Desktop Compressed GPAD
70
60
=
p=}
< 50
3
o
& 40
g
S 30
(=%
2
T 20
[
o
I 1
AN

10 11 12 13 14 15 16 17

m Sequential mSequential Compressed m Parallel Compressed

Fig. 7. Jetson Nano GPAD Speed Up from Parallelization and Compression.

negligible relative to the workload. Figure 8 and ?? illustrates
this comparison, showing the total execution time of SAXPY
and Matrix-Vector Multiplication across varying data sizes.
The GPAD compressed parallel algorithm demonstrates this
trend effectively: as data size increases, execution time scales
more efficiently, leading to substantial speed-ups. This under-

scores the importance of optimizing workload distribution and
task size when designing parallel algorithms, especially on
resource-constrained platforms like the Jetson Nano.

Jetson Nano Compressed GPAD

| =l . S . B ¥ R V)
L= Y L = =

Duration (seconds)

u

100 300 500 700 900 1100 1300 1500 1700 2100 2500 3000
Number of Variables (Nu * N)

w— Sequential Sequential Compressed Parallel Compressed

Fig. 8. Jetson Nano GPAD Duration Comparison.

Desktop Compressed GPAD

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
10000
°S v EHE K8y
Duration (seconds)

Number of Variables (Nu * N)

— SEQUENTI] Sequential Compressed

Fig. 9. Desktop GPAD Duration Comparison.

VII. CONCLUSION

According to Amdahl’s Law, task speedup increases as more
resources, such as CPU cores, are added to the system and a
significant portion of the application is parallelized. However,
the maximum achievable speedup is inherently constrained
by the serial portions of the code. In the multithreaded CPU
implementation of the GPAD algorithm, performance gains
were achieved through effective task parallelization across
multiple cores. Despite these gains, factors such as thread
management overhead and memory access contention limited
the scalability of the implementation. Applied optimizations,
such as minimizing thread synchronization and improving
cache locality, helped alleviate these bottlenecks and further

enhanced performance, demonstrating the importance of bal-
ancing thread granularity with efficient resource utilization.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

REFERENCES

D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967-2986, 2014.

M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predic-
tive control: An engineering perspective,” The International Journal of
Advanced Manufacturing Technology, vol. 117, no. 5, pp. 1327-1349,
2021.

L. Johnsson and G. Netzer, “The impact of moore’s law and loss of
dennard scaling: Are dsp socs an energy efficient alternative to x86
socs?” in Journal of Physics: Conference Series, vol. 762, no. 1. 10P
Publishing, 2016, p. 012022.

P. A. Gargini, “How to successfully overcome inflection points, or long
live moore’s law,” Computing in Science & Engineering, vol. 19, no. 2,
pp. 51-62, 2017.

L. Kosmidis, J. Lachaize, J. Abella, O. Notebaert, F. J. Cazorla, and
D. Steenari, “Gpu4s: Embedded gpus in space,” in 2019 22nd Euromicro
Conference on Digital System Design (DSD). 1EEE, 2019, pp. 399-405.
E. Giiney, C. Bayilmis, and B. Cakan, “An implementation of real-time
traffic signs and road objects detection based on mobile gpu platforms,”
IEEE access, vol. 10, pp. 86 191-86 203, 2022.

M. Diaz, R. Guerra, P. Horstrand, E. Martel, S. Lopez, J. F. Lopez,
and R. Sarmiento, “Real-time hyperspectral image compression onto
embedded gpus,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 12, no. 8, pp. 2792-2809, 2019.
D. Hallmans, M. Asberg, and T. Nolte, “Towards using the graphics
processing unit (gpu) for embedded systems,” in Proceedings of 2012
IEEE 17th International Conference on Emerging Technologies & Fac-
tory Automation (ETFA 2012). 1EEE, 2012, pp. 1-4.

E. Adabag, M. Atal, W. Gerard, and B. Plancher, “Mpcgpu: Real-time
nonlinear model predictive control through preconditioned conjugate
gradient on the gpu,” in 2024 [EEE International Conference on
Robotics and Automation (ICRA), 2024, pp. 9787-9794.

P. Hyatt and M. D. Killpack, ‘“Real-time nonlinear model predictive
control of robots using a graphics processing unit,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 1468-1475, 2020.

P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for embedded linear model predictive control,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 1, pp. 18-33, 2013.

A. Bemporad and P. Patrinos, “Simple and certifiable quadratic program-
ming algorithms for embedded linear model predictive control,” IFAC
Proceedings Volumes, vol. 45, no. 17, pp. 14-20, 2012.

Y. Nesterov, “A method of solving a convex programming problem with
convergence rate mathcal {O}(1/k” {2}),” in Sov. Math. Dokl, vol. 27,
1986.

