
Multithreaded Image Morphology

Abdul Wasay
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mail: wasay@oakland.edu

Abstract—This report presents a program that implements
morphological operations, specifically erosion and dilation,
using sequential and parallel approaches. Parallelization is
achieved using Intel's Threading Building Blocks (TBB)
parallel_pipeline construct. The primary aim is to demonstrate
improved performance with parallel processing while ensuring
correctness through MATLAB-based verification. The report
includes detailed descriptions of the implementations,
experimental setup, results, and conclusions.

I. INTRODUCTION
Image processing is an important component of

modern computational systems. As image resolutions and
data sizes continue to grow, the computational requirements
for processing these images also increase, making speed and
efficiency a significant concern. Many image processing
operations, such as morphological transformations, are
inherently parallelizable, as they involve repetitive
calculations over large data arrays. By introducing parallel
processing frameworks we can significantly reduce
execution times for these image processing operations.

This project focuses on implementing a suite of
image processing operations, including erosion, dilation,
boundary extraction, opening, and closing to evaluate the
potential speedup achieved through parallelization. Both
sequential and parallel implementations of these operations
were developed, with the parallel implementations utilizing
Intel’s Threading Building Blocks (TBB) library. The TBB
structure offers high-level functions like parallel_pipeline
and parallel_for, which are well-suited for tasks that can be
parallelized and divided into multiple independent stages,
such as row-by-row image processing.

The primary goal of this project is to analyze and
compare the performance of sequential and parallel
implementations for each morphology operation. Metrics
such as execution time and time difference between both
implementations are used to evaluate the effectiveness of the
parallelization strategy. By demonstrating the benefits of
parallel processing, this program highlights the importance
of optimizing computational speed and efficiency when
performing image processing.

II. METHODOLOGY

This section elaborates on the program design, the
methods used for parallelization, and the detailed
implementation of each image processing operation. It
describes the program’s structure, inputs and outputs, and
the steps for each operation, both sequentially and in
parallel.

A. Main File
The main file is the heart of the program. It handles the

user’s command-line inputs for selecting the programs
inputs: the number of tokens to use with parallel_pipeline,
the image to perform the operations on, the type of
operation to perform (erosion, dilation, opening, closing,
boundary extraction). Based on user input, it invokes the
corresponding functions from one of the program's header
files, finalproject_fun.cpp. Additionally, the program will
perform both the sequential operation along with the
parallelized one. It then compares the processing times from
sequential and parallel implementations of the two
processing methods. The main file will then print the
completed operating times between the methods and
compute the difference to show the user the performance
gains of using TBB parallel_pipeline vs sequential
operation. FIGURE 1 shows the program flow. First the user
enters in all of the program inputs (ntokens, image type,
operation). The program will then select the image and set
the parameters accordingly. In addition it will also select
which operation to use and set the image kernel based on the
operation. Once that step is done, the program will pass all
the information to the morphology function and perform the
calculation. Finally, it will output the morphed image in a
binary output file.

Figure 1 - Program Flow

When the program will be invoked, the user will input
the number of tokens, desired image type, and desired



morphology operation. The main file will then use the
selected image to configure the structure elements’
parameters. If the user selects image 1, being the smaller
640x480 image, the structure’s (X,Y) values along with the
kernel size will be updated. Then another check is
performed, if the user selects the Erosion operation on
image 1, the program will use a smaller 3x3 Kernel as
opposed to the 5x5 kernel used for the other operations.
FIGURE 2 shows the 3x3 kernel used for image 1’s erosion
operation. For all other operations the 5x5 kernel shown in
FIGURE 3 is used.

Figure 2 - 3x3 kernel

Figure 3 - 5x5 kernel

Once the image parameters are loaded based on the
respective image, the program will select the desired
morphology operation based on user input. It will first start
the timer and then perform the operation sequentially. Once
the operation is done the timer will stop and the
computation time is stored. After this the output is cleared
and the timer will start for the parallel operation. Once this
operation is complete, the timer will end. Next the program
will name the output file based on the image type and
operation. For example, image 1 with erosion performed on
it will cause the output file to be named
“Img1_Erosion.bof”. This is to allow for user ease in
keeping track with the output files across the different
images and operations.

After the desired computations are completed, the
program will output the computation times for both the
sequential and parallel_pipeline implementations into the
terminal for the user to view. FIGURE 4 shows the terminal
output with computation times.

Figure 4 - Terminal Output w/ Computation Times

B. Function File
This file contains the core implementations for all

operations. Each morphological operation: erosion, dilation,
opening, closing, and boundary extraction, is implemented
with two methods: sequentially and parallelized. The
parallel versions utilize Intel TBB parallel_for and
parallel_pipeline to divide the workload among multiple
threads efficiently. In addition to the morphological
operations, this header file also includes the read_binfile()
and write_binfile() functions.

These two functions are provided by the instructor and
are kept unmodified in this project. The read_binfile()
function is used to read incoming image data from the folder
structure. The function has 4 inputs. The first is called
‘data’. This is where the read image data will be stored. The
second function is ‘length’ which is a measure of the images
x*y size. After that we have ‘in_file’ which is the input file
where the image data is stored. Finally the type which is
used to define if the input image data is either an 8 bit
unsigned integer or a 32 bit signed integer. This function
will sequentially index through the image data and store
them in the desired image location. write_binfile() is also
very similar to read_binfile() The only major difference is
that instead of having one input be the input image data file,
this has an output file location as an input. The function will
write the morphed image data to this location.

The first morphological image operation is Erosion. The
erosion operation usually uses a kernel for reducing the
shapes contained in the input image. It works by employing
a kernel that defines the neighborhood of a pixel. For each
pixel, erosion evaluates whether the kernel fits entirely
within the object; if not, the pixel is removed. The operation
is highly effective for removing small noise, breaking thin
connections between objects, and simplifying object shapes.
It is performed both sequentially and with parallel_pipeline.

The im_erosion() function is a sequential
implementation of the morphological erosion operation,
applied to an image represented as a 2D array. This function
takes a structure containing the input image (I), the output
image (O), the kernel (K), the dimensions of the image (sX
and sY), and the dimensions of the kernel (kX and kY). The
goal is to compute the eroded image and store it in the
output array O.

The main operation is in a nested loop structure.
The outer loops iterate over every pixel of the input image
(I), identified by row i and column j. For each pixel, the
variable min_val is initialized to 255, the maximum possible
pixel intensity, so that any valid pixel from the surroundings
will replace it during the erosion process. The nested loops
iterate over the kernel (K), moving through each of its
elements (m and n). The coordinates of the current pixel in
the input image are computed as y = i + m - kY / 2 and x = j
+ n - kX / 2, centering the kernel around the pixel being
processed. A boundary check ensures that the kernel does

https://en.wikipedia.org/wiki/Structuring_element


not exceed the image dimensions. If the kernel’s value at
position (m, n) is 1 and the corresponding image pixel
exists, its intensity is compared with min_val. If the pixel’s
value is smaller, min_val is updated. After examining all
pixels within the kernel's neighborhood, the smallest
intensity found (min_val) is assigned to the output pixel O[i
* sX + j]. This process is repeated for every pixel in the
input image, applying the erosion operation.

The im_erosion_tbb() is the parallelized
implementation of erosion. The function begins by
extracting the required data from the structure, including the
input image (I), output image (O), structuring element (K),
image dimensions (sX, sY), kernel dimensions (kX, kY),
and the number of tokens (ntoken). The ntoken parameter
determines the number of tokens used and defaults to 16 if
not specified.

The first stage of the parallel_pipeline is defined
using a serial filter (filter_mode::serial_in_order). This
stage is responsible for creating tokens that represent rows
of the image to be processed. A variable ‘row’ is used to
track the current row, and the stage sequentially increments
this variable to produce tokens. If all rows have been
processed, the flow is stopped using fc.stop(). This stage
ensures that rows are distributed to subsequent pipeline
stages in an organized way.

The second stage of the pipeline is defined as a
parallel filter (filter_mode::parallel), which allows multiple
threads to process different rows concurrently. Each thread
receives a row index (i) and performs the erosion operation
for all pixels in that row. For each pixel (i, j) in the row, the
minimum intensity value in the neighborhood defined by the
kernel is computed. This involves iterating over the kernel
(m and n) and mapping the kernel elements to its
corresponding image pixels. Boundary checks make sure
that the kernel does not cross the image dimensions, and
only valid pixels are compared to update the min_val
variable. After all kernel positions have been evaluated, the
smallest value is written to the output array O[] at the
corresponding location.

Compared to the sequential im_erosion() function,
the TBB implementation achieves significant performance
improvements by distributing the workload to multiple
threads. This parallel processing reduces execution time,
especially for large images. The pipeline structure also
simplifies the code organization, separating input handling
from computation, making the parallelization strategy more
modular and easier to understand. FIGURE 5 shows a
depiction of the parallel_pipeline structure.

Figure 5 - Erosion Parallel_Pipeline

The next function is im_dilate() which is the
sequentially implemented dilation operation This function
processes an input image pixel by pixel, using a kernel to
identify and write the maximum value in the neighborhood
defined by the kernel to the output image. The function
begins by validating the input parameters. It checks whether
the pointers for the input image (I), output image (O), and
kernel (K) are not null, ensuring that the required data is
available. The dimensions of the input image (sX, sY) and
kernel (kX, kY) are validated to ensure they are positive
values. It then moves onto the computation portion.

The function loops through each pixel of the input
image using two nested loops. The outer loop goes over the
rows (i) of the image. The inner loop goes over the columns
(j) of the image. For each pixel (i, j), the function
determines the maximum value in the neighborhood defined
by the kernel. For each pixel, the kernel is applied using two
additional nested loops. The kernel rows (m) and columns
(n) are looped over. The position of the kernel's elements is
calculated using the index y = i + m - kY / 2 and x = j + n -
kX / 2. This centers the kernel on the pixel. The value of the
pixel in the input image is investigated and the max value in
the kernel is written to the output array O[].

The TBB application, im_dilate_tbb() is the
parallelized version of this. The parallel_pipeline operation
is structured into two stages: row generation and the dilation
computation. The number of tokens, defined by ntoken,
controls the degree of parallelism. The row generation stage
is used to generate rows of the image to be processed in the
computational stage. It divides the rows and gives them one
row at a time into the pipeline. A variable row keeps track
of the current row index. This stage is serialized to make
sure the row order is kept. The dilation computation stage
applies the dilation operation on each row in parallel. For
each pixel (j) in the row (i), the function initializes to the
smallest possible integer value. The kernel is looped over,
and the input pixel values are used in the calculation. The
resulting value is assigned to the pixel's position in the
output image. Multiple rows are processed in parallel by
different threads, as defined by ntoken. Each thread operates
independently on its assigned row maximising efficiency.

After all rows are processed, the pipeline
completes, and the function returns 1, indicating successful
execution. This parallel implementation is beneficial for
large images or kernels, where sequential processing would
be much slower. FIGURE 6 shows the parallelized
implementation with stages.

Figure 6 - Dilation Parallel_Pipeline



The im_boundary function performs boundary
extraction,which is used to highlight the edges of objects in
an image. The operation calculates the boundary of an
image by subtracting the result of an erosion operation from
the original image. This function is implemented
sequentially. It begins by checking the validity of the input
parameters. It then checks that the pointers for the input
image, output image, and kernel are not null. The checks
that the dimensions of the input image (sX, sY) and the
kernel (kX, kY) are positive.

This function also utilizes a temporary buffer. The
purpose of which is to store the result of the erosion
operation. The buffer is dynamically allocated using calloc
to ensure it is initialized to zero. The erosion operation is
applied to the input image using the given kernel for each
pixel. The function sets min_val to 255, representing the
highest intensity for an 8-bit grayscale image. The function
calculates the coordinates of the corresponding input image
pixel relative to the kernel center. If the kernel is within the
image’s bounds and the minimum value is updated and
stored in the temporary buffer labeled ‘eroded’. This process
creates an eroded version of the image, which serves as the
input for the boundary extraction step. After erosion, the
function calculated the boundary by subtracting the eroded
image from the original image. This operation isolates the
edges of objects by removing the inner portion of each
object, leaving only the boundary. The output image is then
stored in the output structure array O[];

The im_boundary_tbb function implements
boundary extraction with TBB. This implementation
performs the erosion operation and boundary calculation in
three distinct stages, using parallel_pipeline and parallel_for
to maximize efficiency. A temporary buffer (eroded) is
allocated using calloc to store the result of the erosion
operation. This buffer is used to calculate the boundary in
the final stage. The first stage ensures rows are processed
sequentially to make sure that the rows are fed in order so
that they are not read out of order. A variable, row, tracks
the current row being processed. This stage feeds the other
rows, passing row indices to the next stage for erosion
processing.

The next stage is the erosion computation. In this
parallel stage, TBB divides the workload among multiple
threads. Each row index from Stage 1 is processed
independently, allowing for parallelized calculations. For
every pixel in the row. min_val is initialized to 255, the
maximum value in an 8-bit grayscale image. It then Iterates
over the kernel dimensions to compute the erosion. Once it
is made sure that the kernel is within image bounds, the
min_val is Updated with the minimum value between

min_val and the pixel intensity at pixel’s coordinates. The
result is then stored in the ‘eroded’ buffer. This stage being
parallelized, significantly speeds up the erosion step. Due to
each row and pixel being processed independently.

After erosion, The third stage of the function
computes the boundary by subtracting the eroded image
from the original image. This is done using tbb parallel_for.
The image is divided into row segments for parallel
processing. This stage isolates object boundaries by
removing the inner portions of objects, leaving only the
edges. It is then written to the output array O[] once all
indexes of the image have been subtracted. FIGURE 7
shows the flow diagram for im_boundary_tbb().

Figure 7 - Boundary Extraction Parallel_Pipeline

The next function is im_open. This function
performs morphological opening on an image. Opening is a
combination of erosion followed by dilation, using the same
kernel. This function achieves the task in different steps,
using temporary storage to do the two morphological
operations. The erosion step is executed using the
im_erosion function. The image data is processed with the
kernel, the result is then stored in the temporary buffer.
Erosion reduces object size by discarding boundary pixels
that do not completely fit the kernel. The dilation step is
executed using the im_dilate function. The intermediate
result from tempBuffer is expanded using the same kernel.
The result is stored in the output buffer O[]. Dilation after
erosion smooths object boundaries and reconnects broken
structures, effectively "opening" the image by removing
smaller objects while maintaining the larger shapes.

The im_open_tbb function implements opening
using TBB to parallelize the operations. Morphological
opening is a sequence of erosion followed by dilation, both
of which are performed in distinct stages using TBB's
parallel_pipeline mechanism. The function begins by
validating the input parameters. It checks that the input
image, output buffer, kernel, and that image and kernel
dimensions are valid. Once the inputs are validated, a
temporary buffer named eroded is used to store the
intermediate erosion results. This buffer has the same size as
the input image and will hold the output of the erosion step,
serving as the input for the subsequent dilation.

The erosion step is performed using a two-stage
TBB parallel pipeline. The first stage iterates through the
image rows sequentially. It ensures that rows are processed
in order to be used in the parallel stage. The second stage
processes each row in parallel, computing the erosion for all
columns within that row. For each pixel, it scans the
neighborhood defined by the kernel to find the minimum



value among pixels overlapping with the kernel. This value
is stored in the eroded buffer.

After completing the erosion, the dilation step is
performed in a similar manner using another TBB parallel
pipeline. The first stage, sequentially passes rows to the
parallel computation stage. The second stage calculates the
dilation for each pixel in parallel, using the intermediate
eroded buffer as input. For each pixel, it determines the
maximum value within the neighborhood defined by the
kernel. The result is stored in the output buffer (O).
FIGURE 8 shows the flow diagram for im_open_tbb().

Figure 8 - Opening Parallel_Pipeline

The im_close function implements morphological
closing sequentially. Morphological closing is an operation
consisting of dilation followed by erosion, designed to fill
small holes and smooth the contours of objects in an image.
This function uses two of the previously defined
morphological operations im_dilate and im_erosion to
perform this task, and a temporary buffer for intermediate
results. The function starts by dynamically allocating a
temporary buffer, with a size equal to the number of pixels
in the input image. This buffer will store the intermediate
results of the dilation step, to make sure that the input image
remains unmodified.

The dilation step is performed first. The function
uses a structure, which contains parameters for the dilation
operation. The output of this structure will save in
tempBuffer. The im_dilate function is then called to execute
the dilation operation. During this step, each pixel in the
image is replaced by the maximum value in its
neighborhood defined by the kernel.

After the dilation, the erosion step is executed. A
second structure is used, where the input is taken from the
temporary buffer, making the dilation result the input for the
erosion process. The output is set to the final output buffer,
so the results of the erosion step are written to the provided
output array. The im_erosion function is then called, and for
each pixel, the minimum value in the kernel neighborhood
is computed and stored in the output buffer. This completes
the closing operation.

The im_close_tbb function implements closing
using a parallelized. Morphological closing involves a
dilation operation followed by an erosion operation, with the
goal of smoothing object boundaries and filling small holes.
This method uses two temporary buffers: one for storing the
intermediate dilation result and another for the final erosion
result. The function employs TBB parallel_pipeline and
parallel_for to parallelize the operations.

Memory is allocated for the first temporary buffer,
which will hold the result of the dilation operation. The
dilation operation is executed as the first stage using
parallel pipeline. The pipeline begins with a serial row
selection process, ensuring that rows are distributed to
parallel threads in the correct order. The second stage of the
pipeline computes the dilation for each selected row in
parallel. For every pixel, the function calculates the
maximum value within the kernel's neighborhood,
constrained by the kernel, and stores the result in the dilated
buffer.

Once the dilation is complete, memory is allocated
for the second temporary buffer, which will hold the final
result of the erosion operation. The erosion step is then
performed using another parallel pipeline. Similar to
dilation, this pipeline starts with a serial row selection stage,
followed by a parallel stage that computes the erosion for
each row. For every pixel, the function determines the
minimum value within the kernel's neighborhood, storing
the result in the eroded buffer. This step uses the dilated
buffer as input, thereby completing the closing operation.

Finally, the contents of the eroded buffer are copied
to the output image using a parallel_for loop, using
parallelism in this step as well. By using TBB's
parallelization capabilities, the im_close_tbb function
efficiently processes images, making it suitable for
high-performance morphological operations on large
datasets. FIGURE 9 shows a flow diagram of the
parallelized implementation of im_close_tbb.

Figure 9 - Closing Parallel_Pipeline



C. Header File
This header file defines the structure and function

prototypes for image processing operations, supporting both
sequential and parallel implementations using Intel's TBB
library. It includes the struct, which holds parameters such
as image dimensions, kernel dimensions, a token count for
parallel pipeline, and pointers to the input image, kernel,
and output image. The file provides prototypes for file I/O
functions to handle binary image data efficiently. It also
declares sequential and TBB-parallelized versions of key
image processing functions: erosion, dilation, morphological
opening , boundary extraction, and morphological closing.
By having all the function prototypes in a single location,
the program is much more organized and easier to follow.

III. EXPERIMENTAL SETUP
The experimental setup involves compiling and running

the C++ image processing program and validating its
outputs using MATLAB for morphological operations. This
ensures correctness and provides a reference for
comparison. The program also outputs the execution times
for operations in the terminal, so that the user can perform
performance analysis. FIGURE 10 shows the user input into
the command line to perform a morphological operation.

Figure 10 - User input

When the program is compiled, it will print instructions
on how to use the tool into the terminal window. As shown

in FIGURE 10, it shows all the valid user inputs and what
order to enter them in. When an operation is complete, the
program prints the operation times for sequential and
parallel implementations directly to the terminal. This
allows for an easy comparison of performance gains
between sequential and parallel versions. FIGURE 11
shows the output of the program when an operation has
been completed. It shows the time for the sequential and
parallel operations and shows the time difference between
the two.

Figure 11 - Program output

MATLAB is used to validate the c++ programs
operation. First the user selects the desired image to
compare the image morphology operation on. The selected
jpeg file is converted to a .bif, or binary image file, which is
read as a 1d array. The matlab script has all the
morphological operations found in the c++ program. Such
as erosion, dilation, boundary extraction, opening, and
closing. The matlab will perform its own morphological
operation and then compare it to the one generated by the
c++ program. It does so by subtracting the difference
between the matlab generated morphed image and the one
from the c++. By doing so we are able to see if there are any
differences between the matlab and c++ operations. It will
display the input image, the matlab generated morphed
image, the c++ morphed image, and finally the difference
image where the two operations are subtracted. Figure 12
shows the different output images from the matlab.

Figure 12 - Morphological Operations



IV. RESULTS

The program performed all of the morphological
operations with no issues. In all cases the parallelized
approach was much faster than the serial implementation.
This however changed in relation to the user input ntoken. If
the user assigned value was either too small or too large the
parallelized operation’s processing time would be negatively
affected. FIGURE 13 shows a table of the morphological
operations computation times with different ntoken values
(5, 16, 100). When comparing the program and matlab
output images, they match for all image and morphology
operation cases. As you can see in the table, the parallelized
computation times are significantly faster than the
sequential operations. In most cases being 2-4 times faster.



In addition we can see that the computation times lower
from 5 tokens to 16, but increase, albeit slightly, from 16
tokens to 100.

Figure 13 - Table with Computation Times

CONCLUSION

This project successfully implemented and
validated multithreaded image processing operations using
C++ and the Intel TBB library. Morphological operations
such as erosion, dilation, boundary extraction, opening, and

closing were optimized for parallel execution, showing
significant performance improvements over their sequential
versions. By including the execution time measurements we
are able to accurately measure how big the performance
gains actually are.

REFERENCES

[1] M. Voss, R. Asenjo Plaza, and J. Reinders, Pro TBB: C++ Parallel
Programming with Threading Building Blocks. New York, NY:
APress Open, 2019.

[2] Intel, “Intel® threading building blocks tutorial,” Intel® Threading
Building Blocks,
https://moodle.oakland.edu/pluginfile.php/9501752/mod_resource/co
ntent/1/IntelTBB_tutorial.pdf (accessed 2024).

[3] D. llamocca, “TBB: parallel_pipeline,” Tutorial: High-Performance
Embedded Programming with the Intel® AtomTM Platform,
https://moodle.oakland.edu/pluginfile.php/9501755/mod_resource/co
ntent/3/Tutorial%20-%20Unit%207.pdf (accessed 2024).


