
Eulerian Video
Magnification and TBB
GRACE SZPYTMAN, CHERWA VANG

ECE 5772

Introduction to Eulerian Video
Magnification (EVM)

EVM magnifies the subtle temporal variations in videos
◦ Motion magnification

◦ Color magnification

EVM motion magnification works by:
◦ Taking a video input

◦ Applying a spatial decomposition

◦ Applying a temporal filter

◦ Amplify resulting image

◦ Saving video output

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

Fluid Dynamics: Lagrangian vs Eulerian
Lagrangian fluid dynamics
◦ Tracks individual particles as they move through

time and space

◦ Particles in a 3d simulation

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame

• Eulerian fluid dynamics
• Analyzes fluid properties at fixed points in space

• Pixels on an image from video feed

cv::mat
std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Video Feed
Convert from BGR to LAB/YIQ space
◦ BGR – blue, green, red channel

◦ LAB – Lightness, RedGreen, BlueYellow ch

◦ More accurate way of representing how humans see color

◦ Can better influence the colors of an image, without affecting
its brightness

◦ YIQ – Brightness, I/Q chrominance

◦ Same as LAB space

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame

RGB to YIQ/LAB conversion

cv::mat
std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Video Feed

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Spatial Decomposition 1
Apply spatial filter by building Gaussian pyramid

1) Apply 5x5 gaussian kernel
◦ Low-pass filter that preserves low spatial frequencies

2) Downsample original image by 2 for each level

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame

EVM: Spatial Decomposition 2
Apply spatial filter by building Laplacian pyramid
(difference of two gaussian pyramid)

3) Upsample the downsampled images with black pixels

4) Apply Gaussian filter to smooth out

5) Get difference between Upsampled image

5) Repeat until original image size is achieved

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Spatial Decomposition 3

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Temporal Filter
Apply a temporal filter with Butterworth Filter
◦ First order Butterworth bandpass filter

◦ Filter out frequencies that are not of interest

◦ Current frame relies on previous frames. Therefore, cannot
process frames out of order
◦ y[n] = nth temporal filtered frame

◦ x[n] = nth Laplacian Pyramid

◦ a0/a1 = feedback coefficient

◦ b0/b1 = feedforward coefficient

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Temporal Filter

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Amplify Image
Amplify each level of Laplacian pyramid to amplify
motion
◦ λ = llamda, special wavelength

◦ δ = delta, displacement factor

◦ αnew = alpha, amplify level

◦ Amplify each pixel value by the amplify value

◦ MFp[L] = output image

◦ L = pyramid level

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Amplify Image

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Store Frame
Reconstruct image
◦ Upsample downsampled images from Laplacian pyramid

◦ Add up all levels in Laplacian pyramid

◦ Attenuate IQ channels to normalize amplification

◦ Combine attenuated IQ image with original image

◦ Convert from LAB back to BGR color space

◦ Display/save output frame

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame

+
+

+

cv::mat
std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM: Store Frame

Video Feed
Spatial

Decomp
Temporal

Filter
Amplify
Image

Store Frame
cv::mat

std::vector
<cv::mat>

std::vector
<cv::mat>

std::vector
<cv::mat>

EVM High Level Overview

P
ip

elin
e

P
ip

elin
e

TBB: Parallelization Strategy 1
Parallel_pipe
◦ Divide the image processing into 3 stage pipelines

◦ Divide the image processing into 5 stage pipelines

Video Feed
& Color
Adjust

Spatial
Decomp

Temporal
Filter

Amplify
Image

Color Adjust
& Store
Frame

P
ip

elin
e

P
ip

elin
e

P
ip

elin
e

P
ip

elin
e

Video Feed
& Color
Adjust

Spatial
Decomp

Temporal
Filter

Amplify
Image

Color Adjust
& Store
Frame

Challenges
Parallel vs Serial_in_order
o Temporal Filter Equation: The current frame y[n] relies on y[n-1], and the Laplacian pyramid x[n] relies

on x[n-1]

Performance improvement
oMore pipes => less efficient

o Algorithm too efficient to optimize through adding pipes

TBB: Parallelization Strategy 2
Parallel_reduce
◦ Process multiple temporal filters in parallel

◦ Each parallel process amplifies a different frequency

Video Feed
& Color
Adjust

Spatial
Decomp

Temporal
Filter[0]

Amplify
Image[0]

Color Adjust
& Store
Frame

Temporal
Filter[1]

Amplify
Image[1]

Temporal
Filter[n]

Amplify
Image[n]

: :

Challenges
Parallel_reduce class instantiation used to much time for it to be a valid strategy for this application
o Class creation too heavy ~ 1s per frame

Results 1: 3 stage pipeline

Color Adjust
Spatial

Decomp
Temporal

Filter
Amplify
Image

Reconstruct
image &

Color Adjust

Get Video
Frame

Store Frame

Pip
eline

Pip
eline

TBB::Parallel_pipe Timings 640x480

41.12 ms = 23.7fps

Trial Frame (ms)

Trial1 19.92

Trial2 14.94

Trial3 19.92

Trial4 17.94

Trial5 16.95

Average 17.93

Single Threaded Timings 640x480

908.8 ms = 1.1 fps

Trial Get (us) Calc (ms) Set (ms)

Trial1 176 6.7 33.525

Trial2 132 6.88 34.2

Trial3 196 6.87 34.7

Trial4 186 6.91 35.5

Trial5 152 6.58 33

Average 168.4 6.788 34.185

Trial Frame (ms)

Trial1 913

Trial2 907

Trial3 925

Trial4 903

Trial5 896

Average 908.8

Trial Get (us) Calc (ms) Set (ms)

Trial1 4.5 1050 10.1

Trial2 4.2 1045 9.8

Trial3 4.6 980 11.6

Trial4 3.9 955 9.9

Trial5 4.4 1011 10.4

Average 4.32 1008.2 10.36

TBB::Parallel_pipe Timings 2280x3840

Single Threaded Timings 2280x3840

1023 ms = .98 fps

17.93 ms = 55.8 fps

Results 2: Parallel Reduce
Slower than sequential ~1s per frame

Video Feed
& Color
Adjust

Spatial
Decomp

Temporal
Filter[0]

Amplify
Image[0]

Color Adjust
& Store
Frame

Temporal
Filter[n]

Amplify
Image[n]

Trial Calc (s)

Trial1 1.04

Trial2 1.1

Trial3 1.16

Trial4 1.1
Trial5 1.07

Average 1.094

Parallel Reduce Timings 640x480

Result 3: 5 Stage Pipeline
Currently not working

P
ip

elin
e

P
ip

elin
e

P
ip

elin
e

P
ip

elin
e

Video Feed
& Color
Adjust

Spatial
Decomp

Temporal
Filter

Amplify
Image

Color Adjust
& Store
Frame

Trial Get (us) Spatial (ms) Temp (ms) Amp (ms) Set (ms)

Trial1 4 360 409 245 33

Theoretical 5 Pipeline Timings 2280x3840

Critical path => 409 ms = 2.44 fps

908.8 ms = 1.1 fps

Trial Frame (ms)

Trial1 913

Trial2 907

Trial3 925

Trial4 903

Trial5 896

Average 908.8

Single Threaded Timings 2280x3840

Future Improvements
Pass Laplacian level of frames to each pipeline
◦ Increases latency of video filtering

◦ Allows for out of order execution, since each parallel_pipeline has all the frames it needs to calculate
the temporal filter

Increase Frame Rate
◦ Decreases processing time

◦ Some software calls wait on an input frame before continuing

Multiple frequency filters in parallel with parallel_reduce

In between filter analysis for feature detection

Demo/Questions

	Slide 1: Eulerian Video Magnification and TBB
	Slide 2: Introduction to Eulerian Video Magnification (EVM)
	Slide 3: Fluid Dynamics: Lagrangian vs Eulerian
	Slide 4: EVM: Video Feed
	Slide 5: EVM: Video Feed
	Slide 6: EVM: Spatial Decomposition 1
	Slide 7: EVM: Spatial Decomposition 2
	Slide 8: EVM: Spatial Decomposition 3
	Slide 9: EVM: Temporal Filter
	Slide 10: EVM: Temporal Filter
	Slide 11: EVM: Amplify Image
	Slide 12: EVM: Amplify Image
	Slide 13: EVM: Store Frame
	Slide 14: EVM: Store Frame
	Slide 15: EVM High Level Overview
	Slide 16: TBB: Parallelization Strategy 1
	Slide 17: Challenges
	Slide 18: TBB: Parallelization Strategy 2
	Slide 19: Challenges
	Slide 20: Results 1: 3 stage pipeline
	Slide 21: Results 2: Parallel Reduce
	Slide 22: Result 3: 5 Stage Pipeline
	Slide 23: Future Improvements
	Slide 24: Demo/Questions

