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Abstract—Eulerian Video Magnification (EVM) is an 

algorithm that magnifies subtle changes in color or movement. 

The EVM algorithm is computationally heavy, requiring 

convolutions, Fourier Transforms, and various math applied to 

each video frame. Since EVM is computationally heavy, it is 

traditionally run with prerecorded videos. To process a live 

video stream, the algorithm needs to run faster than the 

camera’s frame rate. To decrease the computation time, 

efficient strategies must be applied to video processing to 

improve frame rate, decrease frame latency, and provide more 

capabilities. This paper aims to improve upon these features by 

taking advantage of multi-core embedded systems to divide the 

work between multiple cores.  

I. INTRODUCTION 

The need for video processing and filtering has increased 
over the past decades. From phones, to vehicles, home 
security, other smart devices, and industrial uses, cameras 
are more and more involved in everyday embedded systems. 
Raw video footage isn’t useful by itself. Often raw video 
footage undergoes various processing and filters to make the 
video footage usable in software. For example, sharpening 
filters to make the video clearer, and edge detection filters to 
recognize geometry. However, video processing and other 
filters can be computationally heavy. Some algorithms are so 
heavy that it’s not practical to run the algorithm concurrently 
with a live video feed. Instead, the algorithm needs to run on 
prerecorded video. One way to decrease the computation 
time is to improve the processor. 

 
Processors have improved over the years by increasing 

the clock frequency, improving the architecture, new 
technologies, and increasing the core count. By increasing 
the number of cores in a processor and designing software 
that takes advantage of a multicore processor, embedded 
systems can improve performance. To improve the 
performance of video in embedded systems, efficient 
strategies must be used to take advantage of multicore 
architecture. This paper will implement multiple strategies 
using Threaded Building Blocks (TBB) to optimize the video 
processing.  

 
Eulerian Video Magnification (EVM) is an algorithm that 

magnifies subtle color and movement changes. This paper 
will focus on the motion magnification portion of EVM. The 

EVM motion magnification algorithm uses convolution 
filters, Fourie transforms, and various math to magnify subtle 
movements. The algorithm can be summarized with the 
following steps: 

 
1. Fetch frame from webcam or video file 
2. convert from RGB to LAB color space 
3. Spatial decomposition with Gaussian then 

Laplacian pyramid 
4. Temporal filtering to isolate the motion 

magnification 
5. Amplify the motion and attenuate everything 

else  
6. Reconstruct image and convert back from LAB 

color space to RGB color space.  
7. Push frame to display or save video frame 

 
These filters and image processing algorithms are 

computationally heavy. To improve the framerate, and take 
advantage of multicore processors, the EVM algorithm will 
be split into multiple stages, to run concurrently. 

 
Three Parallelization strategies will be used in this paper: 

• 3 stage pipeline. This strategy separates the 
calculation process from the fetch and store 
processes. The assumption with this strategy is 
that the fetch data and store data is a slow 
process. This is shown in Figure 1. 

 
FIGURE 1: THREE STAGE PARALLEL PIPELINE 

 

• 5 stage pipeline. This strategy tries to split the 
image processing time into 5 even stages. This 
will take advantage of processors that have 
multiple cores. This is shown in Figure 2. 

 

 
FIGURE 2: FIVE STAGE PARALLEL PIPELINE 

 



   

 

   

 

• Parallel Reduce to parallelize the Temporal 
filter and amplify stages to process multiple 
filters in parallel. Then joining all the images 
into one to show the operator. This is shown in 
Figure 3. 

 
FIGURE 3: PARALLEL REDUCE MULTI FILTER PROCESS 

 
The scope of the project will be to investigate the best 

way to split up the EVM algorithm to produce the fastest 
computation time or provide the best information to the 
operator. 

EVM is useful in many applications such as vibration 
monitoring on an assembly line, or heartrate monitoring. 
Since EVM can magnify color or motion at various 
frequencies. The faster the processing, the higher the 
framerate. The frame rate is the same as the sampling rate, 
and a higher sampling rate will allow the algorithm to 
magnifier higher frequencies. E.g. To magnify a 60 bm heart 
rate, the camera will need to run at a frame rate of at least 
120 frames per second or at a sampling rate of 120 Hz.   

II. METHODOLOGY 

As stated in the introduction and from Figure 1, the EVM 
algorithm consists of 7 stages. The first and last stages are 
image store and fetch stages and are not involved in the 
EVM algorithm. The middle five stages describe how the 
EVM algorithm works: 

1. Convert from RGB to LAB color space 
2. Spatial decomposition 
3. Temporal filtering 
4. Amplification and attenuation 
5. Image reconstruction, color space conversion 

 

A. Converting form RGB to LAB color space 

Camera sensors and digital displays use the RGB color 

space to capture and display images. RGB stands for red 

blue and green values. The RGB color space stores the 

intensity of each color of each pixel to represent an image. 

RGB is good for digitally representing an image, however,  

LAB or YIQ color space more accurately represents how 

real eyes see color. LAB is a color space standard defined 

by the international Commission on Illumination (CIE). 

LAB stands for perceptual lightness, red-green perception, 

and blue-yellow perception [2]. LAB color space allows the 

image processing algorithm to manipulate the color values 

without affecting the brightness of the image. Figure 4  

shows two images of a Rubik’s cube, one image taken 

outdoors, and one outdoors [3]. The colors are separated to 

their RGB values. Notice how the color values differ 

between the two lighting conditions.  

 
FIGURE 4: RGB COLOR SPACE AT DIFFERENT BRIGHTNESS 

 

Figure 5 shows the same Rubik’s cube in LAB color 

space. Notice that the Lightness value changes between the 

two lighting environments, but the A and B components are 

relatively the same. The color conversion is done using built 

in functions in Open Computer Vision (Open CV). 

 FIGURE 5: LAB COLOR SPACE AT DIFFERENT BRIGHTNESS 

 

B. Spatial Decomposition 

The purpose of spatial decomposition is to apply a filter 

that detects the edges of an image. The spatial 

decomposition starts by creating a Gaussian Pyramid. A 

Gaussian pyramid is created by applying a 5x5 gaussian 

filter to the image shown in Figure 6. The 5x5 Gaussian 

filter is a low pass filter that preserves low spatial 

frequencies.  

 

 
FIGURE 6: 5X5 GAUSSIAN FILTER 

 

Next the image is down sampled by 2 to create the 

second layer of the pyramid. This process repeats for as 

many layers as desired. This is shown in Figure 7. 

 



   

 

   

 

 
FIGURE 7: GAUSSIAN PYRAMID. 

 

Once the Gaussian Pyramid is built, it is turned into a 

Laplacian Pyramid to detect edges. A Laplacian Pyramid is 

done by getting the difference between two adjacent 

Gaussian levels. This is done by taking the higher level, 

lower resolution images of the Gaussian Pyramid, and up 

sampling them. Then the difference between the up sampled 

image and the previous level is used to create a new 

pyramid. This is shown in Figure 8. 

 
FIGURE 8: LAPLACIAN PYRAMID 

 

C. Temporal Filtering 

The purpose of Temporal Filtering is to keep the desired 

frequencies and filter out the undesired frequencies. Like the 

name suggests, the Temporal filter filters in time. In other 

words, the current frame relies on the previous frame to 

determine if the changes between those two frames happen 

within the desired frequency. The temporal filter is a first 

order Butterworth filter. First order is used over higher 

orders since motion magnification is not as uniform as color 

magnification. So, a filter that is tolerant to frequencies 

slightly outside the desired frequency is desirable. An 

example Butterworth filter is shown in Figure 9.  

 
FIGURE 9: BUTTERWORTH FILTER 

 

The Butterworth Filter equation is shown in Figure 10. 

The variables in Figure 10 are: 

• y[n]: nth filtered image output of the current 

frame 

• x[n]: nth Laplacian image output 

• a0/a1: feedback coefficient 

• b0/b1: feedforward coefficient 

 
FIGURE 10: BUTTERWORTH FILTER  

 

D. Amplification and Attenuation 

After the image is filtered, the filtered frequencies are 

amplified. The amplification is done per pixel with the 

following equation shown in Figure 11. The variables in 

Figure 11 are: 

• MFp[L]: Lth amplified output image of the 

current frame 

• Fp : Current filtered pyramid from previous 

stage  

• A: Attenuation Factor 

• L: pyramid level 

• λ : llamda,  special wavelength 

• δ : delta, displacement factor 

• αnew  : alpha, amplify level 

• YIQ is another color format very similar to 

LAB 



   

 

   

 

 
FIGURE 11: AMPLIFICATION EQUATION 

 

As shown in Eq 1 in Figure 11, the Y and I/Q 

component of the image are amplified differently. The I/Q 

component may be attenuated by the variable A. This 

amplification is done at each level of the pyramid, except 

for the first and last levels.  

 

E. Image Reconstruction & Color Space Conversion 

Then each image in the Laplacian pyramid is combined 

by up sampling the higher levels images then adding them 

to the lower level images. This is repeated until the bottom 

and final layer is added. This is shown in Figure 12. 

 
FIGURE 12: ADDING LAPLACIAN PYRAMID AFTER 

AMPLIFICATION AND ATTENUATION 

After the image is rebuilt to the final level, the image is 

converted from LAB space back to RGB, and pushed to a 

video output, or saved to a file. 

 

III. EXPERIMENTAL SETUP 

 
This experiment used a high-performance laptop with a 

base processing speed of 1.9 GHz and included 8 cores and 
16 logical processors as seen in Figure 13. The laptop was 
equipped with Ubuntu 24.04 which included libraries for 
multi-threading and TBB usage. This configuration was 
selected to best implement parallelization strategies. 

 
FIGURE 13: PROCESSOR HW USED IN TESTING 

 
As mentioned in the introduction, three parallelization 

strategies were utilized. A three stage TBB parallel pipeline 
was used to separate the calculations from the fetch and 
store process. Due to the temporal filter relying on previous 
frames, the parallel mode of the pipeline caused the code to 
hang and then a segment fault would be thrown. To rectify 
this the serial_in_order mode was used which allowed the 
incoming data to be calculated in order. The second strategy 
was a five-stage pipeline that would further break up the 
calculation stage into three stages. The image processing 
portion was separated into its individual calculations, the 
spatial decomposition, temporal filter, and image 
amplification. Due to the time and level of difficulty of the 
application a different approach was used. The final strategy 
implemented TBB parallel reduce, which parallelizes the 
temporal filter and amplify stages, to process multiple filters 
simultaneously before combining the results into a single 
image for the operator shown in Figure 3.  However, due to 
parallel reduce class taking time to instantiate, the image 
processing took too long for the strategy to be practical for 
this application.   

  

IV. RESULTS 

After running each parallel implementation, they were 
compared against the sequential implementation. Figure 14 
shows the average per frame calculation of the sequential run 
between two different image sizes.  

Trial Frame (ms)
Trial1 19.92
Trial2 14.94
Trial3 19.92
Trial4 17.94
Trial5 16.95
Average 17.93

Sequential (640x480)

 

Trial Frame (ms)
Trial1 913

Trial2 907

Trial3 925

Trial4 903

Trial5 896

Average 908.8

Sequential (2280x3840)

 
FIGURE 14: AVERAGE RUN TIME FOR SEQUENTIAL PROCESS 

 

Figure 15 shows the average per frame calculation of the 

three pipeline run with two different image sizes. 

 



   

 

   

 

Trial Get (us) Calc (ms) Set (ms) Total (ms)
Trial1 176 6.7 33.53 40.41
Trial2 132 6.88 34.2 41.21
Trial3 196 6.87 34.7 41.77
Trial4 186 6.91 35.5 42.60
Trial5 152 6.58 33 39.73
Average 168.4 6.788 34.185 41.14

Trial Get (us) Calc (ms) Set (ms) Total (ms)
Trial1 4.5 1050 10.1 1060.10
Trial2 4.2 1045 9.8 1054.80
Trial3 4.6 980 11.6 991.60
Trial4 3.9 955 9.9 964.90
Trial5 4.4 1011 10.4 1021.40
Average 4.32 1008.2 10.36 1018.56

3 Stage Pipeline (640x480)

3 Stage Pipeline (2280x3840)

 
FIGURE 15: AVERAGE RUN TIME FOR 3 STAGE PIPELINE 

 

Looking at the results between the two lower resolution 

640x480 images, the calculation times for the sequential 

operation is almost twice as fast as the 3 stage pipeline 

implementation (17.93 ms vs 41.14 ms). This is likely due 

to the overhead cost of creating the TBB Parallel Pipeline. 

However, when image size increases, the results are closer. 

When using the larger resolution 2280 x 3840 images, the 

sequential operation on average is only about 100 ms faster 

than the parallel process (908.8 ms vs 1018.56 ms). 

One surprising result is how quickly the Get and Set 

stages are so fast. One of the assumptions made was that the 

process of fetching and storing each frame was slow relative 

to the calculation speeds. In certain cases this may be true, 

however, for our setup getting and setting data is fast. 

Since the get and set are so fast, some of the calculations 

can be pushed to those stages. This 5 stage pipeline is 

shown in Figure 2. However, due to time constraints, the 5 

stage pipeline design is currently not in a working condition. 

Below, Figure 16 shows what our theoretical timings would 

be with a 5 stage pipeline. These calculations were done by 

timestamping the 3 stage pipeline.  

 
Trial Get (us) Spatial (ms) Temp (ms) Amp (ms) Set (ms) Total (ms)
Trial1 4 360 409 245 33 1047.00  
FIGURE 16: THEORETICAL TIMINGS OF A 5 STAGE PIPELINE 

 

Had the 5 stage pipeline work as intended, then although 

the total time per frame is 1047 ms, however, since this is a 

5 stage pipeline, five frames could be calculated 

simultaneously. This makes the throughput of the 5 stage 

pipeline process ideally 5 times faster. However, since the 

load balancing of each stage isn’t perfect, the actual 

performance increase is limited by the slowest stage. From 

Figure 16, the slowest stage is the temporal filtering stage at 

409 ms. This means that after 5 stages of latency, each new 

frame will come out at approximately 409 ms. Our 

theoretical timings in Figure 16 doesn’t take into account 

the pipeline overhead time. Comparing the pipeline 

overhead between the sequential and 3 stage pipeline, the 

setup cost of creating the two additional stages to the 

pipeline is ~100 ms. If we assume that the adding two 

additional stages also adds about ~100 ms of overhead, then 

the theoretical throughput of the 5 stage pipeline is about 1 

frame per 500 ms. The performance increase is shown in 

Figure 17, with the five stage pipeline having a theoretical 

performance increase of 1.82. 

 

Longest Stage (ms) Performance Increaes
1 908.8 1
3 1018.56 0.89
5 500 1.82  

FIGURE 17: PERFORMANCE INCREASE WITH PIPELINE 

 

Looking at the results, the 3 stage pipeline is slower than 

the sequential one. The 3 stage pipeline would be faster had 

the image processing been divided more evenly. The theory 

was that getting a frame, and saving it to memory is slow 

compared to the image processing time. From these results, 

the assumption is wrong. An improvement to be made to the 

3 stage pipeline would be to move some of the image 

processing to the get and set stages of the 3 stage pipeline. 

The theoretical improvements should be between the 

sequential and five stage pipeline. 

 

Decreasing the calculation time it takes to do image 

processing on a frame is one way to increase performance. 

Another way of increasing performance is to give more 

information to the operator so that the operator can make a 

more informed decision. This was the thought process 

behind using parallel reduce to increase performance. The 

goal was to have multiple parallel paths that filtered and 

amplified different frequencies at the same time. After 

splitting to perform their individual filtering and 

amplification, the join process will concatenate the various 

different filtered images into one large image. This was the 

goal, however, after running with only one filter (parallel 

reduce with only one path, in other words, no 

parallelization), the setup time required by creating the 

parallel reduce class is so heavy, that it is not practical to 

use. This is shown in Figure 18. 



   

 

   

 

Trial Calc (s)
Trial1 1.04

Trial2 1.1

Trial3 1.16

Trial4 1.1

Trial5 1.07

Average 1.094

Parallel Reduce (640x480)

 
FIGURE 18: AVERAGE RUN TIME OF PARALLEL REDUCE 

IMPLEMENTATION 

 

They are many reasons why the parallel reduce 

implementation may not show a speed improvement. The 

most likely reason why the implementation is slower than 

the sequential implementation is likely due to the creation of 

the class. For each filter, a new class needs to be created, 

and the process of creating that class is slow. This can be 

seen in how the parallel reduce was implemented in Figure 

19. 

 

 
FIGURE 19: CODE SNIP OF EMM CLASS CREATION 

 

 

V. CONCLUSIONS 

The results of the experiment shows that there is potential 
for improving the performance of Eulerian Video 
Magnification. By adding more pipelines and spreading out 
the calculations over different stages will increase the 
throughput at the cost of increasing the latency. The image 
processing improvement is more apparent when processing 
large resolution videos. With a potential gain of 1.82 from 
our theoretical results in our 5 stage pipeline. If time had 
permitted, the bugs in the 5 stage pipeline would’ve been 
resolved, and empirical results could’ve been achieved. 

There is still potential in the parallel reduce 
implementation. Due to time constraints, the bug that caused 
the parallel reduce to decrease performance could’ve been 
patched. An improvement on the algorithm doesn’t 
necessarily need to be an improvement to the calculation 
times. Improvement can also be in the form of providing 
more information so that the operator can make an informed 
decision. For example, a video feed that shows motion 
magnification at 8 different frequencies. 
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