
Internal

ECE 4772 / 5772:

High-Performance Embedded Programming

Semester – Fall 2024

Professor: Dr. Daniel Llamocca

Project Topic:

Image Stitching using Parallel programming

Team:

➢ Manoj Verma

+

Internal

Presentation Outline:

➢ Project Goal

➢ Introduction to Image-stitching

➢ Steps

➢ Image Stitching – Sequential Method

➢ Image Stitching – TBB Pipeline Method (2D Image)

➢ Image Stitching - TBB Pipeline (1-D Image)

➢ Image Stitching – Parallel_For (Row)

➢ Image Stitching – Parallel_For (Column)

➢ Image Stitching – Parallel_For (Row + Column)

➢ Image Stitching – PThreads

➢ Processing Time and Speedup

➢ Processing Time measurements for different size of input images

➢ Live Demo.

➢ References

➢ Appendix – Source Code Details

➢ Questions

Internal

Project Goals:
➢ The purpose of this project is to develop an algorithm for stitching and blending images using parallel

programming. During this semester, I gained a significant amount of knowledge about parallel
programming, I have tried to used most of them in this project.

▪ Using Parallel Pipeline parallel programming techniques.

❖ Three stage pipeline stages

▪ Using Parallel-For parallel programming techniques.

❖ Parallel_For to parallelize Row

❖ Parallel_For to parallelize the Column

❖ Nested Parallel_For to parallelize both Row and Column.

▪ Pthread – Multi threading programming Techniques.

❖ Number of threads based on the user input.

❖ Default – 50 threads

▪ Data Acquisitions and Performance analysis between different programming techniques and speedup.

▪ Python Script to Validate the result

❖ Developed a python script to validate the results.

❖ Demonstrate the stitched image result.

Internal

Introduction Image-stitching:

➢ Image Stitching is the process of merging multiple images into a single high-resolution or panoramic image.

An image blending technique is used in compute vision and image processing fields to create seamless

images.

➢ While my research I found that there are many advance algorithms for both image stitching and blending,

however I am focusing in developing an image stitching approach where I could apply the parallel

programming techniques to optimize the performance and maximize the throughput.

➢ The human visual system is highly sensitive to changes in brightness, which helps to discern different visual

artifacts. It is quite easy for our visual system to distinguish two different images if we just stitch the image

without applying any blending, as shown in the Figure-1, it has no homogenous blending.

Figure-1

Figure-2

Internal

Images that’s need to be stitched:

Image-1:

▪ Width: 750

▪ Height: 530

Image-2:

▪ Width: 750

▪ Height: 530

Internal

Image stitching without weight function:

Internal

Steps:

➢ Read two grayscale images and store into two

dynamically allocated memory sections.

➢ Update weight function vectors w1 and w2 for

Image1 and Image2.

➢ Create dynamic memory sections

➢ Apply different parallel programming

techniques to process both the images.

➢ Store the intermediate processed image and

final stitched output image.

➢ Write the processed output image into a file.

➢ De-allocate all the dynamic memories.

➢ Analyze the stitched image.

Internal

Sequential process

Image Stitching – Sequential Method

W1

Image_1

Image_2

W2

NV x n

NV x n

NV x 2nOutput_Image

Sequential Image Stitching

NV x 2n

2n

NV

Output_Image

▪ Width: 750

▪ Height: 530

▪ Width: 750

▪ Height: 530

▪ Width: 1500

▪ Height: 530

▪ Width: 1920

▪ Height: 1080

▪ Width: 1920

▪ Height: 1080
▪ Width: 3840

▪ Height: 1080

Internal

Image Stitching – TBB Pipeline Method (2D Image):

➢ To reads the rows from Image-1 and Image-2 and create a two n-element vector for the next stage.

➢ The parameter passed this first stage are:

▪ Two Images (two 2D data arrays – 2 NV x n matrices).

▪ Two Vectors (Both vectors will have n elements)

▪ Intermediate 2D array (NV x 2n)

▪ Value of n (Elements in each vector)

▪ Value of NV (total no. of rows in the images)

Internal

Image Stitching using TBB Pipeline(2D Image): Stage-1

Internal

Image Stitching using TBB Pipeline(2D Image): Stage-2

Internal

Image Stitching using TBB Pipeline(2D Image): Stage-3

Internal

Image Stitching using TBB Pipeline (1-D Image): Stage-1

Internal

Image Stitching using TBB Pipeline (1D- Image): Stage-2

Internal

Image Stitching using TBB Pipeline (1D-Image): Stage-3

Internal

Image Stitching – Parallel_For (Row)

W1

Image_1

Image_2

W2

NV x n

NV x n

NV x 2nOutput_Image

Parallel_For Image Stitching

NV x 2n

2n

NV

Output_Image

Internal

Image Stitching – Parallel_For (Column)

W1

Image_1

Image_2

W2

NV x n

NV x n

NV x 2nOutput_Image

Parallel_For Image Stitching

NV x 2n

2n

NV

Output_Image

Internal

Image Stitching – Parallel_For (Row & Column both)

W1

Image_1

Image_2

W2

NV x n

NV x n

NV x 2nOutput_Image

Parallel_For Image Stitching

NV x 2n

2n

NV

Output_Image

Internal

Image Stitching – PThreads

W1

Image_1

Image_2

W2

NV x n

NV x n

NV x 2nOutput_Image

Image Stitching - Pthreads

NV x 2n

2n

NV

Output_Image

Internal

Images that’s need to be stitched:

Image-1:

▪ Width: 750

▪ Height: 530

Image-2:

▪ Width: 750

▪ Height: 530

Internal

Image stitching without weight function :

Internal

Image comparison:

Internal

Image Artifacts and processing information:

▪ Row: 1080

▪ Col: 1920

Internal

Image Artifacts and processing information:

Internal

Processing Time and Speedup:

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Sequential

TBB Pipeline
(1D Array)

TBB Pipeline
(2D Array)

TBB Parallel_For
(Row Parallel)

TBB Parallel_For
(Column Parallel)

TBB Parallel_For
(Row + Column Parallel)

Pthreads
(50 Threads)

Average Process time (in uSec)

0

1

2

3

4

5

6

0,574808294 0,624015372

2,746286499

0,324124489

0,910029856

5,437324684

Speedup (S(p) = T(1) / T(p))

Internal

Processing Time and Speed-up:

Sequential

TBB Pipeline
(1D Array)

TBB Pipeline
(2D Array)

TBB Parallel_For
(Row Parallel)

TBB Parallel_For
(Column Parallel)

TBB Parallel_For
(Row + Column Parallel)

Pthreads
(50 Threads)

3870,9

6203,4

5196,9

2106,7

17689

6091,9

1844,3

AVERAGE PROCESS TIME (IN USEC)

0

0,5

1

1,5

2

2,5

Speedup (S(p) = T(1) / T(p))

Internal

Processing Time measurements for different size of input images:

Internal

Python Script:

File Name: test_image.py

Location:

In the source code folder.

Internal

Future Scope:

➢ Combine more than two images of any width and height.

➢ Compute the transformation matrix (homograph) that aligns the matched key point from different

images.

➢ More sophisticated transformation to make it panoramic view.

➢ 360-degree stitching view.

Internal

Conclusion:

➢ The stitching of images is a very practical and extremely useful area which requires a great deal of

computing power to achieve seamless output.

➢ The Parallel programming techniques are most widely used in multi-core CPU based hardware

accelerators designed for such SIMD-based computations, and it is capable of fulfilling the

computing requirements of image processing.

➢ The knowledge we gained from High-performance Embedded Programming contributed greatly to

the development of this project.

Internal

References

➢ https://www.intel.com/content/www/us/en/docs/onetbb/developer-guide-api-reference/2021-

6/onetbb-developer-guide.html

➢ https://en.wikipedia.org/wiki/POSIX

➢ https://en.wikipedia.org/wiki/Image_stitching

➢ https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

➢ https://neptune.ai/blog/image-processing-python

➢ https://courses.cs.washington.edu/courses/cse576/05sp/papers/MSR-TR-2004-92.pdf

➢ https://github.com/natandrade/Tutorial-Medical-Image-Registration

➢ https://en.wikipedia.org/wiki/Image_stitching

➢ https://www.cmor-faculty.rice.edu/~zhang/caam699/p-files/Im-Align2005.pdf

https://github.com/abduld/libwb
https://github.com/abduld/libwb
https://github.com/abduld/libwb
https://github.com/abduld/libwb
https://neptune.ai/blog/image-processing-python
https://courses.cs.washington.edu/courses/cse576/05sp/papers/MSR-TR-2004-92.pdf
https://github.com/natandrade/Tutorial-Medical-Image-Registration
https://en.wikipedia.org/wiki/Image_stitching
https://www.cmor-faculty.rice.edu/~zhang/caam699/p-files/Im-Align2005.pdf

Internal

Appendix – Source Code Details
Environment and tools:

• Linux

• TBB Lib

• Pthread

• g++ Compiler

• Python

• make

Executable File:

• image_stitch_tbb

• Command to clean: make clean

• Command to Run: ./image_stitch_tbb “No. of Pthreads”

• Example: See the screen-shot here

Source Code Files:

• image_stitch_tbb.cpp

• image_stitch_tbb.hpp

• read_file.c

• read_filrm e.h

• Makefile

• Command to build the program: make all

Internal

Appendix – Source Code Details

Sr. No. File Name Generation Methods

1 Stitched_Image_Sequential.bin Generated using the sequential method.

2 Stitched_TBB_pipeline_1d.bin Generated using the TBB parallel Pipeline and

Images are passed as 1-D arrays

3 Stitched_TBB_pipeline_2d.bin Generated using the TBB parallel Pipeline and

Images are passed as 2-D arrays

4 Stitch_image_pthread.bin Generated using the PThreads parallelization

method.

5 Stitched_TBB_parallel_for.bin Generated using the TBB parallel_For.

6 Noblending_Stitched_Image_Sequential.bin Generated using the sequential method without

applying the Weight Function.

➢ Generated Files:

➢ The files 1 through 5 are generated using different parallelism methods, but the contents should be the same.

➢ I have generated File no. 6 in order to illustrate the difference between stitched images generated using weight functions

and non-weight functions.

Internal

Make File:

Appendix – Source Code Details

Internal

Thank You

Questions??

	Slide 1
	Slide 2: Presentation Outline:
	Slide 3: Project Goals:
	Slide 4: Introduction Image-stitching:
	Slide 5: Images that’s need to be stitched:
	Slide 6: Image stitching without weight function:
	Slide 7: Steps:
	Slide 8: Image Stitching – Sequential Method
	Slide 9: Image Stitching – TBB Pipeline Method (2D Image):
	Slide 10: Image Stitching using TBB Pipeline(2D Image): Stage-1
	Slide 11
	Slide 12
	Slide 13: Image Stitching using TBB Pipeline (1-D Image): Stage-1
	Slide 14
	Slide 15
	Slide 16: Image Stitching – Parallel_For (Row)
	Slide 17: Image Stitching – Parallel_For (Column)
	Slide 18: Image Stitching – Parallel_For (Row & Column both)
	Slide 19: Image Stitching – PThreads
	Slide 20: Images that’s need to be stitched:
	Slide 21: Image stitching without weight function :
	Slide 22: Image comparison:
	Slide 23: Image Artifacts and processing information:
	Slide 24: Image Artifacts and processing information:
	Slide 25: Processing Time and Speedup:
	Slide 26: Processing Time and Speed-up:
	Slide 27: Processing Time measurements for different size of input images:
	Slide 28: Python Script:
	Slide 29: Future Scope:
	Slide 30: Conclusion:
	Slide 31: References
	Slide 32: Appendix – Source Code Details
	Slide 33: Appendix – Source Code Details
	Slide 34
	Slide 35: Thank You

