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Project Goals:
➢ The purpose of this project is to develop an algorithm for stitching and blending images using parallel 

programming. During this semester, I gained a significant amount of knowledge about parallel 
programming, I have tried to used most of them in this project.

▪ Using Parallel Pipeline parallel programming techniques.

❖ Three stage pipeline stages

▪ Using Parallel-For parallel programming techniques.

❖ Parallel_For to parallelize Row

❖ Parallel_For to parallelize the Column

❖ Nested Parallel_For to parallelize both Row and Column.

▪ Pthread – Multi threading programming Techniques.

❖ Number of threads based on the user input.

❖ Default – 50 threads

▪ Data Acquisitions and Performance analysis between different programming techniques and speedup.

▪ Python Script to Validate the result

❖ Developed a python script to validate the results.

❖ Demonstrate the stitched image result.
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Introduction Image-stitching: 

➢ Image Stitching is the process of merging multiple images into a single high-resolution or panoramic image. 

An image blending technique is used in compute vision and image processing fields to create seamless 

images. 

➢ While my research I found that there are many advance algorithms for both image stitching and blending, 

however I am focusing in developing an image stitching approach where I could apply the parallel 

programming techniques to optimize the performance and maximize the throughput.

➢ The human visual system is highly sensitive to changes in brightness, which helps to discern different visual 

artifacts. It is quite easy for our visual system to distinguish two different images if we just stitch the image 

without applying any blending, as shown in the Figure-1, it has no homogenous blending.

Figure-1

Figure-2
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Images that’s need to be stitched:

Image-1:

▪ Width:  750

▪ Height: 530 

Image-2:

▪ Width:  750

▪ Height: 530 
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Image stitching without weight function:
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Steps:

➢ Read two grayscale images and store into two 

dynamically allocated memory sections. 

➢ Update weight function vectors w1 and w2 for 

Image1 and Image2.

➢ Create dynamic memory sections

➢ Apply different parallel programming 

techniques to process both the images.

➢ Store the intermediate processed image and 

final stitched output image.

➢ Write the processed output image into a file.

➢ De-allocate all the dynamic memories.

➢ Analyze the stitched image.
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Sequential process

Image Stitching – Sequential Method

W1

Image_1

Image_2

W2

NV x n

NV x n

NV x 2nOutput_Image

Sequential Image Stitching 

NV x 2n

2n

NV

Output_Image

▪ Width:  750

▪ Height: 530 

▪ Width:  750

▪ Height: 530 

▪ Width:  1500

▪ Height: 530 

▪ Width:  1920

▪ Height: 1080

▪ Width:  1920

▪ Height: 1080
▪ Width:  3840

▪ Height: 1080
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Image Stitching – TBB Pipeline Method (2D Image): 

➢ To reads the rows from Image-1 and Image-2 and create a two n-element vector for the next stage.

➢   The parameter passed this first stage are:

▪ Two Images (two 2D data arrays – 2 NV x n matrices).

▪ Two Vectors (Both vectors will have n elements)

▪ Intermediate 2D array ( NV x 2n)

▪ Value of n (Elements in each vector)

▪ Value of NV (total no. of rows in the images)
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Image Stitching using TBB Pipeline(2D Image):  Stage-1
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Image Stitching using TBB Pipeline(2D Image):  Stage-2
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Image Stitching using TBB Pipeline(2D Image):  Stage-3
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Image Stitching using TBB Pipeline (1-D Image): Stage-1
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Image Stitching using TBB Pipeline (1D- Image): Stage-2
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Image Stitching using TBB Pipeline (1D-Image): Stage-3
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Image Stitching – Parallel_For (Row)

W1

Image_1

Image_2

W2
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NV x 2nOutput_Image

Parallel_For Image Stitching 
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Output_Image
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Image Stitching – Parallel_For (Column)

W1

Image_1

Image_2

W2
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NV x n

NV x 2nOutput_Image

Parallel_For Image Stitching 

NV x 2n
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Output_Image
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Image Stitching – Parallel_For (Row & Column both)

W1

Image_1

Image_2

W2

NV x n
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NV x 2nOutput_Image

Parallel_For Image Stitching 
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Output_Image
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Image Stitching – PThreads
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NV x 2nOutput_Image

Image Stitching - Pthreads 
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Images that’s need to be stitched:

Image-1:

▪ Width:  750

▪ Height: 530 

Image-2:

▪ Width:  750

▪ Height: 530 
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Image stitching without weight function :
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Image comparison:
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Image Artifacts and processing information:

▪ Row: 1080

▪ Col: 1920



Internal

Image Artifacts and processing information:
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Processing Time and Speedup:
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Processing Time and Speed-up:

Sequential

TBB Pipeline
(1D Array)
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Processing Time measurements for different size of input images: 
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Python Script:

File Name: test_image.py

Location: 

In the source code folder.
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Future Scope:

➢ Combine more than two images of any width and height.

➢ Compute the transformation matrix (homograph) that aligns the matched key point from different 

images.

➢ More sophisticated transformation to make it panoramic view. 

➢ 360-degree stitching view.
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Conclusion:

➢ The stitching of images is a very practical and extremely useful area which requires a great deal of 

computing power to achieve seamless output.

➢ The Parallel programming techniques are most widely used in multi-core CPU based hardware 

accelerators designed for such SIMD-based computations, and it is capable of fulfilling the 

computing requirements of image processing.

➢ The knowledge we gained from High-performance Embedded Programming contributed greatly to 

the development of this project.
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Appendix – Source Code Details
Environment and tools:

• Linux

• TBB Lib

• Pthread

• g++ Compiler

• Python

• make

Executable File:

• image_stitch_tbb

• Command to clean: make clean

• Command to Run: ./image_stitch_tbb “No. of Pthreads”

• Example: See the screen-shot here

Source Code Files:

• image_stitch_tbb.cpp

• image_stitch_tbb.hpp

• read_file.c

• read_filrm e.h

• Makefile

• Command to build the program: make all
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Appendix – Source Code Details

Sr. No. File Name Generation Methods

1 Stitched_Image_Sequential.bin Generated using the sequential method.

2 Stitched_TBB_pipeline_1d.bin Generated using the TBB parallel Pipeline and 

Images are passed as 1-D arrays 

3 Stitched_TBB_pipeline_2d.bin Generated using the TBB parallel Pipeline and 

Images are passed as 2-D arrays 

4 Stitch_image_pthread.bin Generated using the PThreads parallelization 

method.

5 Stitched_TBB_parallel_for.bin Generated using the TBB parallel_For.

6 Noblending_Stitched_Image_Sequential.bin Generated using the sequential method without 

applying the Weight Function.

➢ Generated Files:

➢ The files 1 through 5 are generated using different parallelism methods, but the contents should be the same.

➢ I have generated File no. 6 in order to illustrate the difference between stitched images generated using weight functions 

and non-weight functions.
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Make File:

Appendix – Source Code Details
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Thank You

Questions??
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