

Image Stitching using Parallel programming Techniques

Manoj Verma

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: manojverma@oakland.edu

Abstract— In this project, I will develop algorithms for stitching and

blending photographs using pthreads or TBB programming on a

multicore computer learnt in this semester. An image stitch is

the process of combining several individual images that overlap in

order to form a composite image. Using Multicore processing system

and parallel programming techniques allows us to take advantage

of the parallel processing capabilities. Using TBB libraries, we can

write parallel programs that are capable of running on intel

multicore CPUs in order to significantly speed up certain

computational tasks. The stitching of images is a method of

computer vision that involves stitching together multiple

overlapping images to create a larger panorama in a seamless

manner. It is commonly used for the creation of wide-angle photos

and the generation of 360-degree images.

I. INTRODUCTION

Image Stitching is the process of merging multiple images into
a single high-resolution or panoramic image. An image blending
technique is used in compute vision and image processing fields
to create seamless images. The aim of this project to implement
image stitching and image blending algorithm using parallel
programming techniques. The focus of this project based on the
parallel programming knowledge that I gained during this
semester.

While my research I found that there are many advance
algorithms for both image stitching and blending, however I am
focusing in developing an image stitching approach where I could
apply the parallel programming techniques to optimize the
performance and maximize the throughput.

II. IMAGE BLENDING

The human visual system is highly sensitive to changes in
brightness, which helps to discern different visual artifacts. It is
quite easy for our visual system to distinguish two different
images if we just stitch the image without applying any blending,
as shown in the Figure-1, it has no homogenous blending.

Figure 1: Non blended stitching

I will develop a blending function to make stitching

more homogenous.

Figure 2: Weighted function for blending.

III. IMPLEMANTAION AND ALGORITH CONCEPT

Figure- 3: Block Diagram

IV. IMAGE STITCHING – SEQUENTIAL METHOD

Figure-4 illustrates the sequential method. The function is based

on nested "for-loops". There is an outer loop that accesses the

Row element of both images and an inner loop that processes the

Column element. One potential inefficiency of this method is

that it can be computationally intensive and slow, especially for

large images, due to the repeated access of each pixel in a nested

manner. Additionally, this method does not take advantage of

parallel processing capabilities, which could significantly speed

up the operation by processing multiple rows or columns

simultaneously. As a result, the sequential approach may not be

optimal for applications requiring real-time image processing..

Figure- 4: Sequential Processing - Block Diagram

Steps:

• There are two grayscale images of same resolutions that are

read and stored in two dynamically allocated memory

sections.

• Update the weight function vectors w1 and w2 for Images 1

and 2.

mailto:manojverma@oakland.edu

• Create dynamic memory sections to store the processed

image.

• Access every pixel in the nested for-loop, multiply the

respective weight function elements store in the vectors W1

and W2.

• Write the final processed image into a file.

• De-allocate the dynamic allocated memories.

• In this example, I have taken two examples and processed

them sequentially. Below table shows the processing time

for image sizes of 750x 530 and 1920 x 1920. The

significant difference in processing times between the two

image sizes can be attributed to the increased number of

pixels in the larger image. Larger images contain more data,

which requires more computational resources and time to

process. Understanding these differences is crucial for

optimizing performance and resource allocation in image

processing tasks.

Figure- 5: Sequential Processing time measurement

V. IMAGE STITCHING – TBB PARALLEL PIPELINE

Using TBB parallel pipeline, we can optimize the processing

time. This TBB pipeline implementation is divided into three

stages. The details of each stages are given below.

• Read two grayscale images and store into two

dynamically allocated memory sections.
char **inputImage1 = (char **)calloc((n*NV), sizeof(char *));
char **inputImage2 = (char **)calloc((n*NV), sizeof(char *));
double *w1 = (double*)calloc(n, sizeof(double));
double *w2 =(double *)calloc(n, sizeof(double));
NV = Number of Rows in the images.
n = Number of the pixel in each row.
Read Two image here and store into the above created

dynamic memories.

• Update weight function vectors w1 and w2 for Image1

and Image2.
int image_hw = (n/2);

int factor1;
double factor2;
for (int x = 0; x<n; x++){

factor1 = (i/image_hw);
 factor2 = (((n-1)/(double)x) – 1);
 w1[x] = factor2
 w2[x] = (double)x/(double) Image_hw;
}

• Create two dynamic memory section to store the

intermediate processed image and final stitched output

image.
o Width will twice of the input image.

double **intermidiate_image = (double **)calloc((2*n*NV), sizeof(double *));
char **stitched_image = (char **)calloc((2*n*NV), sizeof(char *));

• Below Function will invoke the parallel_pipeline and perform

the parallel operation.

• Basically, it will have three parallel pipelines.

• The function “ImageStitchPipeline” will invoke all the three

parallel pileline.

void ImageStitchPipeline (int ntoken, int n, int NV, double **a, double **r,
double *c) {
parallel_pipeline(ntoken, make_filter<void, MyPixelPair>(filter::serial_in_order,
Input_myImages(inputImage1, inputImage2, w1, w2, stitch_image, n, NV))

 & make_filter<MyPixelPair, double *>(filter::parallel,
PixelWeight_Calculator ())
 & make_filter<double*, void>(filter::serial_in_order,
My_StitchedImage(c, n)));
 }

Figure- 6: Demonstration of pipeline and the operations at each stage.

• Stage-1:
• The purpose of stage-1 to reads the rows from Image-1 and

Image-2 and create a two n-element vector for the next stage.

• Below code snapshot realizes the first stage of the parallel

pipeline. The parameter passed this first stage are:
o Two Images (two 2D data arrays – 2 NV x n

matrices).

o Two Vectors (Both vectors will have n elements)

o Intermediate 2D array (NV x 2n)

o Value of n (Elements in each vector)

o Value of NV (total no. of rows in the images)

Figure- 7: Stage-1 of the three stage TBB parallel_pipeline

• Stage-1 class definition and Functor.
class Input_myImages{
char **I1;
char **I2;
double *w1
double *w2
double **r;
 int n;
int NV;

mutable int i;
public:
Input_myImages (char **I1p, char **I2p, double *w1p, double *w2p,
double **rp, int np, int NVp) : I1(I1p), I2(I2p), w1(w1p), w2(w2p), r(rp),
n(np), NV(NVp), i(0) {}

MyPixelPair operator ()(flow_control &fc) const {
 MyPixelPair t;
 const MyPixelPair ret_val = {.x = NULL, .y = NULL, .xw = NULL, .yw = NULL,
.r = NULL, .n = 0};
 if (i < NV) {

 t.x = *(I1 + i);
 t.y = *(I2 + i);
 t.xw = w1 + i;
t.yw = w2 + i;
t.r = *(r + i);
t.n = n;
i++;
return t;
 }
 else {
 fc.stop();
 return ret_val;
 }
 }

 };

MyPixelPair class:

Class MyPixelPair {

Public:

 char *x; // A n-element vector from image-1.

 char *y; // A n-element vector from image-2.

 double *r; // A n-element vector from intermediate image.

 double w1; // Image-1 weight vector.
 double w2; // Image-2 weight vector.

int n; // Total element into each vector.

}

• Stage-2:
• The output of the stage-1 will be vector of data type

“MyPixelPair”. It will apply weight coefficient on each pixel of
the image. No parameters passed to the functor. It is configured

to run in parallel, so that items can be processed concurrently.

The Functor of this stage is given below:

class PixelWeight_Calculator{
public:

 double * operator() (MyPixelPair input) const{

 int i;
 double *result = input.r;
 for(i = 0; i < input.n; i++){

 result[i] = input.w1[0]*input.x[i]; // Apply weight coefficient on image-
1 pixels.
 result[i + n] = input.w2[0]*input.y[i]; // Apply weight coefficient on image-
2 pixels.

 }

 return result;

 }

};

• Stage-3:
• This stage performs rounding and saturation of each pixel and

store the data into output 2D array. Syntax-wise, the stage has

no outputs, but this stage places the result in the array c
(provided as an input parameter to its functor).

• Here the total number of elements in the intermediate vector

will be 2n. So below for loop need to process for all the 2n
element and store into the final 2D array.

class My_StitchedImage {

public:
 mutable int j;
 double *ci;
 int n;

 My_StitchedImage (double *cp, int np): ci(cp), n (np), j(0){}

 void operator () (double *rt) const{

 int k;

double tmp;

 for (k = 0; k < 2n; k++) {

 if (rt[k] > = 0) {

 tmp = rt[k] + 0.5;

 }

 else
 tmp = rt[k] – 0.5;
 }
 ci[k + j] = tmp; // Update the final buffer. This buffer will have the
stitched image.

 j++;
 }
};

• High-level flowchart is given here.

• I have taken two examples and processed them using

parallel pipeline methods. Below are the time

measurements. The following table illustrates the processing

time for images with sizes of 750 x 530 and 1920 x 1920

respectively.

VI. IMAGE STITCHING – PARALLEL_FOR TECHNIQUES

I implemented the same stitching algorithm as TBB Parallel
For in order to evaluate its performance. The use of TBB parallel
provides significant advantages, including improved parallelism
and scalability. Compared to other parallel algorithms, TBB
Parallel For offers more efficient workload distribution and
dynamic scheduling, which can lead to better performance on
multi-core processors. Unlike basic thread-based approaches,
TBB handles thread management automatically, reducing the
complexity for developers. Additionally, it often results in better
cache utilization and reduced overhead, making it a preferred
choice for optimizing performance in complex applications.
However, TBB Parallel For may not always be the best choice
for every application. It can introduce overhead when the
workload is too small or when the task granularity is not
appropriately set. Furthermore, TBB's abstraction might limit
fine-grained control over thread management, which can be
crucial for certain specialized applications needing precise
tuning.

VII. IMAGE STITCHING – PTHREADS TECHNIQUES

I implemented the same stitching algorithm using pthreads in

order to evaluate its performance. In the implementation, the

user is able to enter the number of threads that can be used to

process each image. Using pthreads provides significant

advantages, including improved parallelism and scalability. This

allows for better utilization of multi-core processors, leading to

faster image processing times. Additionally, it offers a flexible

and efficient way to manage thread workloads, enhancing

overall performance.

VIII. PROCESSING TIME AND SPEEDUP

An analysis of the performance of image stitching algorithms

using different parallel programming techniques is provided in

the following table. The results indicate that parallel

programming significantly enhances the efficiency and speed of

image stitching algorithms.

0 10000 20000 30000 40000 50000

Sequential

TBB Pipeline…

TBB Pipeline…

TBB Parallel_For…

TBB Parallel_For…

TBB Parallel_For…

Pthreads…

Average Process time (in uSec)

IX. CONCLUSION

• For seamless output, stitching images is a very practical and

very useful application that requires a large amount of

computing power. Recent advancements in Parallel

programming techniques have significantly reduced

computational speed. These improvements allow for more

efficient processing of high-resolution images, enabling

stunning panoramas and 3D models.

• Parallel programming techniques are most commonly used

in multi-core CPU-based hardware accelerators designed

for such SIMD-based computations, and they can fulfill

many of the computing requirements for image processing.

Parallel programming allows for faster processing times by

distributing tasks across multiple cores, enabling

simultaneous execution of computations. This results in

improved performance and efficiency, particularly when

handling large datasets and complex algorithms in image

processing. Additionally, it can enhance the accuracy and

quality of image analysis by enabling more detailed and

comprehensive computations.

• Our knowledge of High-performance Embedded

Programming has been instrumental in the development of

this project. By optimizing code for efficiency and speed,

we significantly enhanced the system's performance. This

expertise allowed us to minimize resource consumption,

ensuring the software could run smoothly on same CPU

hardware.

X. REFERENCES

• https://www.intel.com/content/www/us/en/docs/onetbb/deve
loper-guide-api-reference/2021-6/onetbb-developer-
guide.html

• https://en.wikipedia.org/wiki/POSIX

• https://en.wikipedia.org/wiki/Image_stitching

• https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread
.h.html

• https://neptune.ai/blog/image-processing-python

• https://courses.cs.washington.edu/courses/cse576/05sp/pape
rs/MSR-TR-2004-92.pdf

• https://github.com/natandrade/Tutorial-Medical-Image-
Registration

• https://en.wikipedia.org/wiki/Image_stitching

• https://www.cmor-faculty.rice.edu/~zhang/caam699/p-
files/Im-Align2005.pdf

}

0
1
2
3
4
5
6

0,57480829
4

0,62401
5372

2,74628649
9

0,324124489

0,91002985
6

5,43732468
4

Speedup (S(p) = T(1) /
T(p))

0 5000 10000 15000 20000

Sequential

TBB Pipeline…

TBB Pipeline…

TBB Parallel_For…

TBB Parallel_For…

TBB Parallel_For…

Pthreads…

3870,9

6203,4

5196,9

2106,7

17689

6091,9

1844,3

Average Process time (in uSec)

0
0,5

1
1,5

2
2,5

Speedup (S(p) = T(1) / T(p))

https://www.intel.com/content/www/us/en/docs/onetbb/developer-guide-api-reference/2021-6/onetbb-developer-guide.html
https://www.intel.com/content/www/us/en/docs/onetbb/developer-guide-api-reference/2021-6/onetbb-developer-guide.html
https://www.intel.com/content/www/us/en/docs/onetbb/developer-guide-api-reference/2021-6/onetbb-developer-guide.html
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Image_stitching
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html
https://neptune.ai/blog/image-processing-python
https://courses.cs.washington.edu/courses/cse576/05sp/papers/MSR-TR-2004-92.pdf
https://courses.cs.washington.edu/courses/cse576/05sp/papers/MSR-TR-2004-92.pdf
https://github.com/natandrade/Tutorial-Medical-Image-Registration
https://github.com/natandrade/Tutorial-Medical-Image-Registration
https://en.wikipedia.org/wiki/Image_stitching

