ECE-5772- HIGH PERFORMANCE EMBEDDED PROGRAMMING

ENHANCING MATRIX INVERSION EFFICIENCY

A PARALLEL IMPLEMENTATION OF LU
DECOMPOSITION AND CHOLESKY DECOMPOSITION

INTRODUCTION

1 Matrix inversion is a critical computational task in various Inverseof { 1,1, 1 | 751525
- g)) .. 4, 3,1 is| -3/2,0, 1/2
scientific and engineering applications, such as embedded 3 5 3 11/10. -1/5, -1/10

systems, signal processing, control systems, machine
learning, real-time systems etc.,

"I We have implemented two matrix inversion algorithms-
Cholesky and LU decomposition in sequential and
parallel.

"I The significant performance enhancements are attained
through parallel programming.

Parallelism

‘ Core 1 Core 2

PROGRAMMING LANGUAGE: C,C++ PARALLELISATION STRATEGY:
LANGUAGE Intel TBB —Parallel_for

LU DECOMPOSITION MATRIX INVERSION

start

An LU decomposition of a matrix A is the intialize input, Lower triangular(L), Identity(l),Upper

product Of a |ower trlangular matrlx(L) and an tria ngUlﬂr{U}.lntermEdlﬂtE{d}ﬂnd rE:SUIthK} matrices.
upper triangular matrix(U) that is equal to A.
A=LU;
check input matrix is non-singular-
determinantis not 0.
Lower
Triangul
///' o decompose Ainto L and U using row operation
A00 A01 A02 1 0 0 Uo00 U01 uo02
Kib A A N, I——— WS AX=l. Substitute A=LU, LUX=I;Substitute
A20 A21 AR L20 L21 1 0 0 u2 UX=d;Ld=I;UX=d
Upper == compute Ld=lusing forward substitution and UX=d using backward
Triangular

substitution.

check A.X=I

stop

LU DECOMPOSITION MATRIX INVERSION-ALGORITHM

EXPLANATION

Singular and Non - Singular Matrices

det (A) (or) |Al

Inverse of 2x2 Matrix THE MATH EXP i

If A = [: 2] then

el
i \

Inverse Determinant Adjoint
of A of A of A

Note: A'exists only whenad - bc =0

100 1 o
L= 000 | u= [N opy o
&l &;1 == input

matrix

Row operation to get L and U matrices:
R2=R2-(4*R1); R3=R3-(3*R1);R3=R3-(-2*R2);-->gives U matrix

Put this multiplier in corresponding L matrix —gives L matrix

100 L
=410 U s Y A-Ly

3-21 0.0, -10

LU DECOMPOSITION MATRIX INVERSION--ALGORITHM

EXPLANATION

A*X=1; A=L*U; (LU)*X=I; U*X=d; L*d=I.

00 1ol
FORWARD SUBSTITUTION (solve from top to bottom) ~ , _ do0 d01 d02 100
_ A .) L= |410 d= 1=11010
L*d=I; to get d, where L- lower triangular matrix, d-intermediate matrix, I- d10| d11 d12
identity matrix 3-21 d20 | d21 d22 001
Solve column by column to compute d matrix. < L
111 x00| x01 X02 100
BACKWARD SUBSTITUTION (solve from bottom to U= [0-1-5 | x=| v10l x11 x12 | 68=|-4 |1 |0
top) | o | 00 -10 x20 x21 X22 11 2 |1
U*X=d; to get X, where U- upper triangular matrix, X-inverse matrix, d- —
intermediate matrix(received from forward substitution)
Solve column by column to compute X matrix.
L 111 100
VERIFICATION (verified using MATLAB) 43q |« [IBVE25
A*X=|; where A- input matrix, X-inverse of A, |- Identity matrix. A*X=) is-3/2,0, 1/2 =010
Identity matrix computed from ¢ code is written to a binary file and this 353 1110, -1/5, -1/10 001

binary file is compared with the identity matrix generated by the
MATLAB code and the difference between those is displayed.

RESULTS OF TIME STAMP ANALY SIS OF

SEQUENTIAL IMPLEMENTATION

SIZE(number of rows and | Computation time(in
Slower processing speed columns) milliseconds)
100 6
Limited Real time 500 297
application usage 1000 2428
1500 9499
Scalability issues 1750 18699
Inefficient Resource 2000 42017

Utilization

PARALLELISATION STRATEGY-MAP PATTERN

After initialization, we used Intel TBB parallel _for (map pattern) for decomposition of
Ainto L and U, Forward substitution to get d, backward substitution to compute N
X(OUtpUt). 4—————— » N*N, where N is 3

-

L)

DECOMPOSING A INTO L AND U: parallel_for-row
FORWARD AND BACKWARD SUBSTITUTION: parallel_for-column

For decomposing A into L and U, by using map pattern we have parallelized Map

the rows to run in a parallel way in order to simultaneous update the values

of L and U matrices. subrange subrange subrange
L . o . value ranges value ranges value ranges

For forward, backward substitution, main task may get divided into 3 tasks (theses 3 tasks from 0-2 from 3-5 from 6.8

will run in parallel however each task will run sequentially inside it), so each task may

handle each column values to compute d, X from Ld=I; UX=d; Fig. 2 depicts one possible implementation of the map pattern.

THREAD SAFE IMPLEMENTATION Map pattern will divide the rows/columns
where L, I- for forward and U, d-for backward, matrices are shared among 3 tasks, but these tasks ~ 'Nt0 different subranges and it will assign
won't modify/update the L, I in forward and U, d in backward, it will just read values from Land I, th€se subranges into different threads and

and U and d to compute d [3][3] and X [3][3]so that we can prevent the race condition. the scheduler will assign these different
threads into different cores available in the

system

PARALLELISATION STRATEGY-PARALLEL PIPELINE

After initialization and decomposition of A into L and U, we used Intel TBB parallel pipeline , for Forward substitution to get d, and
backward substitution to compute X(output).

We have implemented the forward and backward substitution by using
parallel pipeline.

» Firststage: Giving columns indices as input Stage-1 -...........
» Second stage: Forward substitution to compute intermediate matrix(d)
« Third stage: Backward substitution to compute inverse matrix(x) using Stage-2 _.-.--.-.-.
intermediate matrix(d) from forward substitution.
seees ~[RN IREN RN

Fig. 2 depicts one possible implementation of the parallel pipeline

PIPELINE IMPLEMENTATION

We have given number of token as 16, in the first stage 16 columns indices will be processed and
given as an input to the second stage where the forward substitution will solve 16 columns

in parallel to compute the intermediate matrix (d) and once the each columns is processed it will
be send as an input to the final stage where backward substitution takes place to compute inverse
matrix(x) using intermediate matrix(d) values from previous stage like this till the column values
raeches the size of given matrix this process will continue to compute the inverse.

RESULTS

TIME STAMP ANALY SIS OF SERIAL AND PARALLEL

Intell_TBB-

parallel_for ‘

SIZE (number of
rows and columns)

Computation time(ms)

SIZE(number
of rows and columns)

Computation time(ms)

100 2 100 -
500 63 =0 -
1000 877
Intell _TBB- 1000 841

— " parallel_pip Sy 1500 1274
1750 8140 eline 1750 120
2000 14378

2000 14257

Programming methods for size=2000

Time to compute inverse

(in milliseconds) and speed improvement via

Sequential

Intel-TBB- Parallel for
Intel-TBB- Parallel _pipeline

parallelization (in %)
42017

14378(65%)

14257(66%)

RESULT
LU DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE

2000

rm - pipe .o core
g++ -03 -Wall -std=c++11 -< pipe Ffun.cpp -Ltbb -1m
g++ -03 -kWall -std=c++11 main.cpp pLpe funmn.o -1m -Ltbhb -o pipe

Enter the size of the matrix {(nNn > nNmn): 2000
Starting LU decomposition and iLnwversion with pipeline. ..
Pipeline elapsed time: 14415 ms

: S od
rm - for *.0 core
g++ -03 -Wall -std=c++11 - par_fTunmn.cpp -Ltbb -1m
g++ -03 -Wall -std=c++11 main.cpp par_ _fun.o -T1m -Ltbb -o for
Enter the size of the matrix {(n > nNmn): 2000
Starting LU decomposition and iLnversion. ..
Sequential elapsed time: 14493 ms
: S od
rm -f seq *.o0 core
g++ -03 -kWall -Cc seq_fTun.cpp -Lm
g++ -03 -Wall main.Ccpp seq fun.o -1m -0 Sseq
Enter the size of the matrix {(n =< nNn): 2000

Starting LU decomposition and Lnwversion. ..
Segquential elapsed time: 40531 ms

S make clean

S malke all

S -JSpipe

< cd - -
paralLle_ fTor
S make clean

S make all

S W STFfor

S cd - -
seguential
S make clean

< make all

S LS seq

RESULT
LU DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE
3

S make clean
rm -f pipe *.0 core
5 make all

g++ -03 -Wall -std=c++11 -c pipe fun.cpp -1tbb -Im
g++ -03 -Wall -std=c++11 main.cpp pipe fun.o -Im -1tbb -0 pipe

S .[pipe

Enter the size of the matrix (n x n): 3

Input Matrix:

7.00 4.00 1.00 ANSWER
3.00 5.0 5.00 1

15
5,00 9.00 2.00 | | ® g
Starting LU decomposition and inversion with pipeline... The inverse matrix is ‘W ‘4@ E} ~
Inverse Matrix: ~ 15 iﬁ% ~1F
0.21 -0.01 -0.09 0.209580838323353 —0.005988023952096 —0.089820359281437
-0.11 -0.05 0.19 —0.11377245508082 —0.053802215568862 0.191616766467066
0.019.26 -0.14 —0.011976047004192 0.25748502004012 —0.137724550898204
Pipeline elapsed time: 2 ms
Verification Matrix (A * A inv):
1.00 0.00 0.00
-0.00 1.00 0.00

-0.00 -0.00 1.00

MATLAB RESULT

LU DECOMPOSITION MATRIX INVERSION-SEQUENTIAL

<a = & @l 21 [0/ » home » ramya-rajaraman » hpep_project » sequential »

Current Folder ® [Editor - fhome/ramya-rajaraman/hpep_project/sequential/lu_decompose.m
Name £ | | lu_decompose.m |+ |
seq_fulltime — as g1sp("PTOaOUCT OT MATrIX ang ITS INVEerse (Shodld De LOentITy MatrIxX): J;
#) final_with_tolerance.m 49 disp(resultMatrix);
) final_without_pivot.m gg end
j !SS'bOf 52 % Write the result matrix to a bimary Tile
[iss_100.bof 53 filemame = 'matlab_result_matrix.bof"’;
) iss_500.bof 54 fileID = fopen(filename, 'wb'};
j iss_1000.bof 55 fuwrite(fileID, resultMatrix, ‘'double’);
] iss_1500.bof 56 fclose(filelD);
) iss_1750.bof 57
j iss_2000.bof 58 % Read the binary Tile generated by the C code
£ o aecomposesn
) main.cpp == lu_decompose
] makefile Enter the size of the matrix (n x n): 2
] matlab_result_matrix.bof Input Matrix:
] matlab_result_matrix_no_pivoting.bof 8 =] 8
) project_1.m g S 7
j seq 4 3 5]
] seq_fun.cop Inverse Matrix:
1 seq_fun.o 0.6875 -0.2500 -0.6250
) seq_header.h -0.4167 0.3333 0.1667
-0, 2500 0] .5000
Product of Matrix and Its Inverse (Should be Identity Matrix):
1 0] Q
Q 1 Q
0] Q 1
Sum of Absolute Differences: 0
== Lu_decompose
Enter the size of the matrix (n x n): 2000
Sum of Absolute Differences: 0
== Lu_decompose
Enter the size of the matrix (n x n): 1500
lu_decompose.m (Script) v sum of Absolute Differences: ©
]] _ _ == Lu_decompose
MATLAB script to replicate the C code functionality Enter the size of the matrix (n x n): 1750
Sum of Absolute Differences: 0
s |

MATLAB RESULT

LU DECOMPOSITION MATRIX INVERSION-PARALLEL

= = 5 el 3= 0 4 » home » ramya-rajaraman = Documents » checkinggg_seq » for

Current Folder @ | |[[Z Editor - fhomesramya-rajaraman/Documents/checkinggg_seq/for/lu_decompose.m
|Name £ | | lu_decompose.rm | + |
] for 29 disp({"Inverse Matrix:");
1 for.bof 48 disp(inverseMatrix);
] for_100.bof AL sl
] for_So00.bof Command Windoww
1 for_1o000.bof === Lu decompose
] for_1500.bof Enter the size of the matrix (n = nNn): =
1 for_17s0.bof Input Matrix:
1 for_2000.bof s = -
fjluideconﬂposeJn Ed S 1@
B 1 =2 L=
1 main.cpp
[makefile i Inverse Matrix:
1 matlab_resul_matrix.bof o. Zsoo O, 2SO0 Q. 120
J par_fun.cpp 0. 92053 -0.5213= -Q.1719
j par_fun.o -l Fles Q.59z22 O.015s
j par_header.h
Product of Matrix and Its Inverse (Should be Identity Matrix):
1. 0000 Lo} B e clololo]
oy olololo] 1.0000 B olololo]
o] lo] i clololo]

Sum of absolute Differences: o
== Lu_decompose
Enter the size of the matrix (n = n): 100
Sum of aAbsolute Differences: ©
== Lu_decompose
Enter the size of the matrix (n x n): Soa
Sum of Absolute Differences: ©
== Lu_decompose
Enter the size of the matrix (n x n): 1000
Sum of sabsolute Differences: ©
== Lu_decompose
Enter the size of the matrix (n =x nl): 1500
Sum of aAbsolute Daifferences: o
== Lu_decompose
lu_decompose.m (Script) = Enter the size of the matrix (n = nl: 1750
Sum of Absolute Differences: o
== Lu_decompose
Enter the size of the matrix (n x n): ZO0o
Sum of sAbsolute Differences: ©
Jx ==

MATLAE script to replicate the C code functionalry

MATLAB RESULT
LU DECOMPOSITION MATRIX INVERSION-PARALLEL

Dec5 11:16

Result Matrix Received Matrix Difference Matrix

00 80 1000) 1400 16 00 £ 200 0 200 400

Columns

CHOLESKY DECOMPOSITION MATRIX INVERSION

Initialze input matrix A , Lower Tria matrix L,

A cholesky decomposition is a mathematical Transpose matrix LAT

method used to decompose a symmetric,
positive definite matrix A in to the product of a
lower triangular matrix(L) and its transpose L"T.

The input matrix A must be symmetric, positive
definite and diagonally dominant

A=L* L"T;
Calculate the diagonalelement of L matrix if
i==j Set sgrt{A[i][j]-sum) Check for the
condition L[i][i] based on L*LT =A
_» Lower Triangular L
— — sl = — —
A”“ A“] Ay L”“ 0 0 Loo Lio Lz Calculate the Off-Diagonal Element of L
= matrix, if i > j Set L[1]1[j] = (ALi][j] - sum) S L[j1[}]-
A — E L Finally decompose A matrixinto Land L*T.
'\1() ‘“\H ‘“\12 L]n LH 0 0 8 21 Y P
—\,0 ~\:] Ay L,“ L.'n [0 0 L_..
— — —— ’ " — = p—
’ = Solve L - y= b for ForwardSubstitution, L™ T.x=

Transpose of L+~ ¥ for BackwardSubstitution. check A.A~-1 = |

CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM STEPS

STEPS TO FOLLOW Positive-Definite matrix
Symmetric matrix A = AT (Afilli=ALlLi)

4 2
IFA= ;
4 2 3 4 2 3 (2 3)
A= 5 6 AT=12 5 6
(3 6 7) 3 6 7 « D = 4 (the top-left element of A).
e Dy =det(A)=(4)(3)-(2)*=12-4=28.

Since Dy > 0and Dy > 0, the matrix is positive definite.

To verify the symmetry of the matrix manually, we check the following:

1. The element at position (1,2) in A is 2, and itis equal to the element at position (2, 1) in A. DlagOna| Va|UES mUSt be pOSItIVG
2. The element at position (1,3) in A is 3, and itis equal to the element at position (3, 1) in A.
3. The element at position (2, 3) in A is 6, and it is equal to the element at position (3, 2) in A. o symmetric and positive definite matrix.

Since all corresponding off-diagonal elements are equal, the matrix is symmetric.

4 12 -16 70 0
A=112 37 -43 L=1|7 70
-16 —43 98 777

Compute the diagonal element L[0][0], where i==]

Take A[0][0]=4, Since it's the diagonal element, calculate:
L[O][0]=sart(A[0][0]) =sart(4) =2
Compute the Off -diagonal element L[1][0], where i > j

L[1][0] = A[1][0] - sum / L[0][O] ,

Here, sum - sum of product of already computed elements of coll and
rowl

L[1][0]=12-0/2=>6
Compute the Off -diagonal element L[2][0], where i > |
L[2][0] = A[2][0] - sum / L[O][O] ,
L[2][0] =-16 — 0/2 => -8

Compute the diagonal element L[1][1]

L)1) = /A[1][1] - sum

Where, Sum - sum of squares of already calculated value in the same row
L[1][1] = sart(A[L][1] - L[1][0] * L[1][O])
sqrt(37 - (6*6)) =sqrt(1) =>1

Compute the Off -diagonal element L[2][1], where i >]
L[2][1] =A[2][1] - sum / L[1][1] , where sum = L[2][0]*L[1][O]
L[2][1]=-43-(-8*6)=-43+48/1=>5

Similarly for L[2][2] -

sart(A[21[2] - L[2][0]* L[2][0] + L[2][1]*L[2][1]

sqrt(98-(8*8) + (5*5)) = sqrt(98 - 89) = sqrt(9) => 3

Diagonal computation(Serial) 9 0 0
Sequential dependency & Smaller workload L= lﬁs ; g]

Numerical stability considerations Therefore ,

CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM

EXPLANATION

A=L*LA AT, L*Y =B; L"T*X=Y; A*X=l;

00
FORWARD SUBSTITUTION (solve from top to bottom) | _ (g1 | [Y00 YOL 02} | 100
L*Y=B; to get Y, where L- lower triangular matrix, Y-intermediate matrix, B- B yH yll yl2 yi13 b=/ 010
Identity matrix. Solve column by column to compute Y matrix. -853 y21 y22 y23 001

-8

26 x00 X01 X02 12 0 0
BACKWARD SUBSTITUTION (solve from bottom to Lrt= [0 15| x=| w11 w12 x13 ly=|3 1 0
top) 00 3 19/3 -5/3 1/3
P x21 x22 x23

LAT*X=Y; to get X, where LAT- Transpose matrix, X-inverse matrix, Y-
intermediate matrix(received from forward substitution)
Solve column by column to compute X matrix.

- . 4 12 -16
VERIFICATION (verified using MATLAB) 1237 -43 b 1/18 , -122/9, 19/ 100
A*X=I; where A- input matrix, X-inverse of A, I- Identity matrix. A*X= - -62/9, 3419519 =1 010
Identity matrix computed from ¢ code is written to a bof file and this bof -16 -43 9 19/9, -5/9, 1/9 001

file is compared with the identity matrix generated by the MATLAB code
bof file , and the difference between those will displayed.

CHOLESKY SEQUENTIAL IMPLEMENTATION

SIZE(number of rows and

Computation time(ms)

columns)
100 5
500 338
750 988
1000 2217
1500 7104
2000 17180

CHOLESKY PARALLELISATION STRATEGY-MAP PATTERN

After initialization , we used Intel TBB parallel_for (map pattern) for computing "
cholesky decomposition, Foward substitution to get Y, backward substitution to > N*N, where N is3
get X(inverse). D g

To decompose Aiin to L and LT , we used row wise parallelization to compute the
off-diagonal elements. Each thread will assigned to one or more rows and processed

. M

simultaneously. o
For computing the inverse of matrix, main task may get divided into 3 tasks (these 3 subrange j::ﬁ:j:ges subrange
tasks will run in parallel, however each task will run sequentially inside it), so each :i'ff;ges fom 3.5 :f;::j“‘;ges
task may handle each column values to compute Y, X from Ly=b; L"T*X=;

Fig. 2 depicts one possible implementation of the map pattern.

THREAD SAFE IMPLEMENTATION

where L, b- for forward and LT, Y-for backward, matrices areshared among 3 tasks,
but these tasks won't modify/update the L, b in forward and LT, Y in backward, it will
just read values from L and b, and LT and Y to compute Y [3][3] and X [3][3]so that
we can prevent the race condition.

CHOLESKY PARALLELISATION STRATEGY- PARALLEL PIPELINE

After initialization , we used Parallel pipeline for computing Foward substitution to Result per unit
get Y, backward substitution to get X(inverse). _
Data units
We use 2 main stages in the Parallel pipeline implementation. Task1 Task?
Stage 1 : Generates column indices col represents the column of the inverse matrix . o
AN-1 Fig. Two stage Parallel Pipeline

Stage 2: Compute the inverse of the given matrix by doing forward and backward
substitution by getting the column indices from stagel, and it will store the inverse

IMPLEMENTATION OF PIPELINE

The pipeline implementation involves stage-2 pipeline. The stage-1 is serial stage which
generates col indices, that represents the current column to process. The stage-2 is
parallel stage , it takes the column index (col) from Stage 1 and performs the
calculations to compute the inverse of that column using forward and backward
substitution. Combine the work of forward substitution, backward substitution, and
assignment to the inverse matrix A*-1 in a single stage. Col 1 - solve L*y = e, col2-
solve LA"T*X =Y, col 3 - store X in the col(column of A*-1).

CHOLESKY RESULTS

TIME STAMP ANALY SIS OF SERIAL AND PARALLEL

SIZE (number of | Computation time(ms) SIZE(number | Computation time(ms)
rows and columns) of rows and columns)
100 3 100 1
500 111 500 40
Intell TBB-
— 750 168
Para"el_for ‘ Inte”_TBB- 750 137
1000 330 parallel_pip) 1000 313
1500 1094 eline 1500 1039
2000 2675 2000 3015

Programming methods for size=2000 Time to compute inverse

(in seconds) and speed improvement via

parallelization (in %)

Sequential 1’7180
Intel-TBB- Parallel_for 2675 (84%)

l~aecal TDD DA sl Al —~P—~A B~ in | g /Q')OA\

RESULT- SEQ, PARALLEL,PIPELINE
CHOLESKY DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR SIZE
2000

r+1 revathi@revathi-Latitude-3510: ~fhome/revathi/Projed

S make clean
rm -f seq *.o0 core
3 S make all
g++ -03 -Wall -c seq fTun.cpp -1lm
g++ -03 -Wall -o seq seg.cpp seq_fun.o -1m
: 5 ./seq
Enter the size of the matrix: 2000
The inverse of the matrix A has been computed.
Elapsed time: 17816 ms
S cd
S cd cholesky para/
S make clean

rm -f tbb fTor *.o core
S make all

g++ -03 -Wall -std=c++11 -c tbb_fun.cpp -1tbb
g++ -03 -Wall -std=c++11 tbb_ for.cpp tbb_fun.o -1tbb -o tbb_ for

: s ./tbb_for
Enter the size of the matrix: 2000
The inverse of the matrix A has been computed.
Elapsed time: 2684 ms
s cd
S cd cholesky pipeline/
S make clean
rm -f pipe *.0 core
= S make all
g++ -03 -Wall -std=c++11 -c pipe fun.cpp -1ltbb -1m
g++ -03 -Wall -std=c++11 pipe.cpp pipe_fun.o -1m -Ltbb -o pipe
: S . /pipe
Enter the size of the matrix: 2000
The inverse of the matrix A has been computed successtTullwy.
Elapsed time: 2563 ms

RESULT
CHOLESKY DECOMPOSITION MATRIX INVERSION- TERMINAL OUTPUT FOR
SIZE 3

— —
rewvatcthimmrevachi-Lactitude-3510: —/homey/rewvachi/s/Prc

- Tbhbh_ FfFor LD COr e
= S make a L
-3 -Wall - std=cs++ 11 - Tbhbb_ Ffun.cpp L = =1 =3
-3 -Wall - std=cs++ 11 tbhbb for . .cpp tTbhb_ fumn.o -Ltbb -o Tbb_ Ffor
= = - STtbb_ FfFfor
r the size of the matr ix: 3
Tt matrix {ad):
h= 3 ra E=3
i [3 (=7
E= (=7 <3 =
Tnwverse of Tthe matrix A has been computed
sed TtTime: 2 ms
rse matrix (N Lnwverse D) :
2. 0108853 -2 .01 55 - 2202698
-2 .91 5 5 D .. 01l59398 - 20219086
-2 .. 20202698 -2 . 900219008 6 2. 025 F 34
Identity matrix (A * A inver s
u = =
LC] u =
LC] = a1
Enter the size of the matr ix>x: 1
The Lnwvwerse of Tthe matrix A has been computed
ElLapsed T iLime : 3 MmMs

Enter the size of the matr ix>x: S50
The Lnwvwerse of Tthe matrix A has been computed
ElLaps=ed T ime : 111 ms

Enter the size of the matrix: TS50
The Lnwerse of The matrix mA has been computed
Elapsed Time : 168 ms

Enter The size of The matrix: 19
The Anwvwerse of The matrix A has been computed
Elapsed Time : T30 ms

Enter The size of The matrix: 15006
The Anwvwerse of The matrix A has been computed
Elapsed Time : 1992 ms

Enter the size of tThe matrix: 20006
The LAnwvwerse of tThe matrix A has been computed
ElLapsed Time : 2675 ms

MATLAB RESULT

CHOLESKY DECOMPOSITION MATRIX INVERSION-SEQUENTIAL

MATLAB R2024b - academic use

E%@E@cﬂ

HOME APPS EDITOR PUBLISH
i = <A %e Bl = - (=] section Break ~
ED:I Tj E i=] Compare - E>|] l'—l‘fitj = ﬁ? i o Profiler b [) @:>
New Open Save = print GoTo “AFind ~ Refactor e & Analyze Run £ Run and Advance Run Step Stop
- -~ - ~ A Bockmark ~ -~ - Section PE4 Run to End -~
FILE NAVIGATE CODE ANALYZE SECTION RUN

= = (5] @) 7 [0/ » home » revathi » home » revathi » Project » cholesky seq »

[Editor - fhome/revathi/home/revathi/Project/cholesky_seq/final_seq.m ® x | Workspace
rd- 39 i, |Name £ Value
mat_script.m 40 % Werify the result by multiplying A and A _inverse A 2000x2000 double
final.m j; resutthatrix = A T A nverse; %A_\nver;e 2000x2000 double
ans 0
final_seq.m 43 % Display the result matrix for small sizes Hi b 2000x1 double
lab2_for.m 44 if n == 5‘) o HH differenceMatrix 2000x2000 double
project_1.m 45 dl.sp(Product mf Matrix and Its Inverse (Should be Identity Matrix):'); HEIﬂE‘]D 3
_— 46 disp(resultMatrix); Iz il ‘matlab _iss.bof
| final_seq.m e end ename matlab_iss.bos
f 48 i 2000
49 % Write the result matrix to a binary file E\dentr‘.‘y 2000x2000 double
ca £ilaname — tmarlab iee hofl- - HEHL 2000x2000 double
Command Window H n 2000
D |c[+| receivedFilename ‘iss.bof_2000"
== final_seq | FH receivedmatrix 2000x2000 double
Enter the size of the matrix (n x n): =3 |l HH resultMatrix 2000x2000 double
Input Matrix (A): I sumabsolutenif.. 0
4.5222 ©.9459 0.7457 H threshold 1.0000e-12
0.9459 4.1155 1.1329 x 2000x1 double
0.7467 1.1329 4.36822 EE v 2000x7 double

Inverse Matrix (A_inverse):
0.2355 -0.04832 -0.02832
-0.04832 Q.2702 -0.0624
-0.0283 -0.0624 0.2503

Product of Matrix and Its Inverse (Should be Identity Matrix):

1.0000 0.0000 2]
0.0000 1.0000 2]
]] 1.0000

sum of Absolute Differences: ©.000000000000
== final_seq

Enter the size of the matrix (n x n): S0
sum of Absolute Differences: ©.000000000000
== final_seq

Enter the size of the matrix (n x n): 750
sum of Absolute Differences: 0.0000000Q000Q
== final_seq

Enter the size of the matrix (n x n): leoE
sum of Absolute Differences: ©.000000000000
== final_seq

Enter the size of the matrix (n x n): 1500
Sum of Absolute Differences: ©O.000000000000
== final_seq

Enter the size of the matrix (n x n): 2000
sum of Absolute Differences: ©.000000000000

CHOLESKY DECOMPOSITION MATRIX INVERSION-PARALLEL

MATLAB RESULT

EDITOR

:llj LS % il Compare E>|] <«

9 Ye B1 > =| Section Break
é‘ﬁ‘J o m i Profiler [é[=

MATLAB R2024b - academic use

> &

2w Open Save = pring - GoTo — Eindh Refactor e [(& Analyze Run E} HENER R R Run Step Stop
- - - - [l Bockmark ~ - - section [Z} Runto End -
FILE NAVIGATE CODE ANALYZE SECTION RUN

FEEEEEEICN] |

= & @l 32 37 » home » revathi » home » revathi » Project » cholesky_para
Editor - fhome/revathi/home/revathi/Project/cholesky_para/final_Para.m

mmand Window

== final_Para
Enter the size of the matrix (n x n): 3
Input Matrix (A):

4. 4407 1.2700 1.0458

1.2700 4.2255 0.9058

1.0458 0.9058 3.8525

Inverse Matrix (A_inverse):
0. 2567 -0.0855 -0.0343
-0.0855 0.2859 -0.0447
-0.0543 -0.0447 0.2848

Product of Matrix and Its Inverse (Should be Identity Matrix):
1.0000 -0.0000 Q
-0.0000 1.0000 0. 0000
-0.0000 0.0000 1.0000

Sum of Absolute Differences: 0.000000000000
== final_Para

Enter the size of the matrix (n x n): 100
Sum of Absolute Differences: 0.000000000000
== final_Para

Enter the size of the matrix (n x n): SO
Sum of Absolute Differences: 0.000000000000
== final_Para

Enter the size of the matrix (n x n): 750
Sum of Absolute Differences: 0.000000000000
== final_Para

Enter the size of the matrix (n x n): 1000
Sum of Absolute Differences: 0.000000000000
== final_Para

Enter the size of the matrix (n x n): 1500
Sum of Absolute Differences: 0.000000000000
final_Para

Workspace

Name £ Value

Hd A 2000x2000 double
HH A inverse 2000x2000 double
EE‘ ans v}

Hlb 2000x7 double

HH differenceMatrix 2000x2000 double
H filelD 3

=[] filename 'matlab_iss.bof
Hi 2000

H identity 2000x2000 double
HL 2000x2000 double
Hin 2000

receivedFilename
HH receivedMatrix
HH resultMatrix

H sumAbsoluteDif...
HH threshold

H x

Hy

'issfor_2000.bof
2000x2000 double
2000x2000 double
4]

1.0000e-12
2000x7 double
2000x7 double

MATLAB RESULT

LU DECOMPOSITION MATRIX INVERSION-PARALLEL

Eile Edit View Insert Tools Deskiop Window

i = Y

200

400

600

800

S

£ 1000
=
1200
1400
1600
1800

2000

a0 & E

Help

Result Matrix

Aannmn

15N

VO

0.9

0.8

0.7

0.6

200

400

600

800

S

£ 1000
=
1200
1400
1600
1800

2000

| =aTal

Figure 1

Received Matrix

Annn

150y

TaTa'nl

0.9

0.8

0.7

0.6

200

400

600

200

S

£ 1000
=

1200

1400

1600

1800

2000

Difference Matrix

Annn

150y

rTala’nl

0.9

0.8

0.7

0.6

ver 4
' U w
“Oe
o
o

!
g TILAYIES
s
TR
'. " (11
:. o (11]
‘~'. " e
> TTIEe
. ¢ e »
: V b an
o
LTS

A

CONCLUSION

We conclude that our work shows how parallel programming is used to increase the
productivity of matrix inversion operations. Significant processing time savings are
achieved through parallelization, underscoring the advantages of concurrent execution over
several threads. Our work highlights how parallel programming can revolutionize matrix

Inversion processing capabilities and how important it is to improve performance in

challenging computational jobs.

REFERENCES

1) “ECE-5772-Lecture notes unit 4-Map Pattern”- https://moodle.oakland.edu/pluginfile.php /9501748/mod_resource/content/5/Notes% 20-%20Unit%204.pdf

2) "Matrix Row Operations,” Khan
Academy. Available: https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations

3) "Matrix Inversion and Eigenvalue,"
SRM Institute of Science and Technology. Available: https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018 MatrixInversionandeigenvalue.pdf

4) Y. Zhang, "LU Decomposition,” CAAM, Rice University, Fall 2009. Available: https://www.cmor-faculty.rice.edu~zhang/caam335/F09/handouts/lu.pdf

5)A. Ziefert, "Cholesky Decomposition,"
Matrix Algebra, Oct. 13, 2020. [Online].Available: https://zief0002.github.io/matrix-
algebra/cholesky-decompostion.html

6) "Triangular matrix," Wikipedia, The Free
Encyclopedia. [Online]. Available: https://en.wikipedia.org/wiki/Triangular_ma
trix. [Accessed: Nov. 14, 2024].

https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-elementary-matrix-row-operations/a/matrix-row-operations
https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2018
https://www.cmor-faculty.rice.edu~zhang/caam335/F09/handouts/lu.pdf
https://zief0002.github.io/matrix-
https://en.wikipedia.org/wiki/Triangular_ma

RAMYA RAJARAMAN
B REVATHY SEKAR

UNDER GUIDANCE OF
PROF.DANIEL LLAMOCCA

DEMO

ANY QUESTIONS?

D
O
>
X
Z
<
T
—

	Slide 1
	Slide 2: INTRODUCTION
	Slide 3: SOFTWARE Requirements
	Slide 4: LU DECOMPOSITION MATRIX INVERSION
	Slide 5: LU DECOMPOSITION MATRIX INVERSION-ALGORITHM EXPLANATION
	Slide 6: LU DECOMPOSITION MATRIX INVERSION--ALGORITHM EXPLANATION
	Slide 7: RESULTs of Time Stamp analysis of SEQUENTIAL IMPLEMENTATION
	Slide 8: PARALLELISATION STRATEGY-MAP PATTERN
	Slide 9: PARALLELISATION STRATEGY-parallel pipeline
	Slide 10: RESULTS Time Stamp analysis of serial and parallel
	Slide 11: RESULT LU DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 2000
	Slide 12: RESULT LU DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 3
	Slide 13: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-SEQUENTIAL
	Slide 14: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-PARALLEL
	Slide 15: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-PARALLEL
	Slide 16: Cholesky decomposition MATRIX INVERSION
	Slide 17: Cholesky decomposition MATRIX INVERSION aLGORITHM sTEPS
	Slide 18: Cholesky decomposition ALGORITHM EXPLANATION
	Slide 19: CHOLESKY DECOMPOSITION MATRIX INVERSION ALGORITHM EXPLANATION
	Slide 20: cholesky SEQUENTIAL IMPLEMENTATION
	Slide 21: Cholesky PARALLELISATION STRATEGY-MAP PATTERN
	Slide 22: Cholesky PARALLELISATION STRATEGY- parallel pipeline
	Slide 23: Cholesky RESULTS Time Stamp analysis of serial and parallel
	Slide 24: RESULT- Seq, Parallel,Pipeline cholesky DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 2000
	Slide 25: RESULT cholesky DECOMPOSITION MATRIX INVERSION- tERMINAL OUTPUT FOR SIZE 3
	Slide 26: MATLAB RESULT cholesky DECOMPOSITION MATRIX INVERSION-SEQUENTIAL
	Slide 27: MATLAB RESULT cholesky DECOMPOSITION MATRIX INVERSION-Parallel
	Slide 28: MATLAB RESULT LU DECOMPOSITION MATRIX INVERSION-PARALLEL
	Slide 29: Advantages of using parallelization techniques
	Slide 30: Applications
	Slide 31: CONCLUSION
	Slide 32: REFERENCES
	Slide 33
	Slide 34
	Slide 35

