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ABSTRACT 
Matrix inversion is a critical computational 
task in various scientific and engineering 
applications, such as embedded systems, 
signal processing, control systems, machine 
learning, real-time systems etc., Traditional 
sequential matrix inversion techniques can 
be computationally intensive, especially 
with large matrices, leading to significant 
delays, more resource consumption, and 
inefficiencies in performance-critical 
systems. In this project, we implemented 
parallelized versions of the two matrix 
inversion decomposition algorithms- 
Cholesky and LU decomposition algorithms 
and we achieved performance efficiency 
through different Intell TBB parallelization 
strategies, which makes it suitable for using 
it in a real time applications. Through this 
parallelization techniques, scalability issue 
has been resolved, which helped in making 
use of all the available resources. 
Keywords- Parallel Programming, 
Performance Optimization, Matrix 
Inversion, LU and Cholesky 
Decomposition, Multithreading, 

Sequential vs. Parallel Processing, 
Performance Comparison. 
I. Introduction 

Our project focus on applying the parallel 
computing to two important matrix 
inversion methods - LU and Cholesky 
decomposition.  we explained what these 
algorithms are, how it works, and why they 
are useful for solving equations and inverse 
matrices. Due to limitations of Sequential 

approach, which solve problems one step at 
a time, become slow when working with 
large matrices and why we need a quicker 
approach. By applying Parallelization in LU 
and Cholesky decomposition. The tasks will 
get divided into multiple threads or 
subranges and these threads are assigned to 
different cores present in the system to get 
processed simultaneously to speed up the 
process. We also compared the speed of the 
parallel program with the Sequential ones 
and measured how much improvement we 
can achieve. The main motivation is to make 
solving large matrix problems faster and 
more efficient. As technology advances and 
the size of data grows, traditional sequential 
methods become inefficient and slow when 
dealing with real time applications. By 
implementing parallelization, we can handle 
these larger problems in less time, making 
important applications like simulations, data 
analysis, and machine learning more 
efficient. By improving the speed of LU and 
Cholesky decompositions, this project can 
save time and computing resources in 
industries like data science, engineering, and 
research. Faster computations lead to 
improved performance in systems that 
handle complex math, allowing faster results 
in real-world tasks which will be suitable for 
real time applications as well. 

We have implemented our project with LU 
and Cholesky decomposition inverse 
algorithms by using different parallelization 
frameworks like Intel TBB Parallel for and 
Parallel Pipeline that we have learned in this 
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course in order to parallelize our algorithms 
to achieve performance efficiency.  

Parallel programming is used in many 
applications to make tasks faster and more 
efficient, especially when dealing with 
complex computations. In Graphics 
Transformation, matrix inversion is used to 
compute transformations in 3D graphics, 
such as perspective corrections and rigid 
body motions. In cybersecurity, matrix 
inversion plays a crucial rule for encryption 
and decryption techniques. In autonomous 
Vehicles, the concept of Kalman filter is 
used for object detection, lanes detection 
etc., matrix inversion plays a significant role 
in this Kalman filter, so by paralleling this 
matrix inversion algorithms to achieve 
performance efficiency will make it suitable 
for using it in real time systems.  

 
         II. METHODOLOGY 
 A. LU DECOMPOSITION MATRIX 
INVERSION 
An LU decomposition of a matrix A is the 
product of a lower triangular matrix and an 
upper triangular matrix that is equal to A. 
A=LU [1]; A -Input Matrix L-Lower 
triangular matrix - A square matrix in which 
all the elements above the main diagonal are 
zero. In LU Decomposition matrix 
inversion, the main diagonal elements in 
lower triangular matrix being equal to 1.U-
Upper triangular matrix- A square matrix in 
which all the elements below the main 
diagonal are zero. To find the inverse of a 
matrix using LU decomposition then the 
input matrix needs to be square (number of 
rows and columns should be equal) and a 
non-singular matrix (determinant of a input 
matrix shouldn’t be zero) By using LU, we 
can find inverse of A through forward and 
backward substitution method. 
 

 
 
       Fig: Flowchart of LU Decomposition 
 
 LU DECOMPOSITION MATRIX 

INVERSION- ALGORITHM 
EXPLANATION 
            A-Input matrix, X- Inverse of A 
matrix, I-identity matrix (diagonal elements 
are 1). 

A*X=I. 
For instance, let's consider A, I as 3*3 
matrix. 

Decompose A into L and U.  
Find L, U using Gaussian elimination 
technique. The steps are as follows, 
 Step 1: Do Row operations [4], in row 2 
and row 3 using row 1 to get the first 
element of row 2 and row 3 as 0, and while 
doing this, substitute the number what we 
used to get first element of row 2 and 3 as 
zero using row 1, into the first element of  

start 

intialize input A, identity  I and inverse matrices 
X. 

decompose A into L and U using row 
operation 

A.X=I. Substitute A=LU, LUX=I;Substitute 
UX=d;Ld=I;UX=d 

compute Ld=I using forward substitution and 
UX=d using backward substitution.   

check A.X=I 

stop 



   
 

   
 

lower triangular matrix row 2 and 3. 
 Step 2: Do same Row operation [4], in row 
3 using row 2 to get the second element of 
row 3 as 0, and while doing this, substitute 
the number what we used to get second 
element of row 3 as zero, into lower 
triangular matrix row3 second element. 
Step 3: By doing step 1 and 2, we can get 
upper and lower triangular matrix. 

 
Once we compute L and U, we can use this 
to find inverse of matrix A.  
A.X=I; where X is inverse of A 
Substitute A=LU, in above equation, 
LU.X=I. 
LUX=I; Let's assume UX=d (solve using 
backward substitution method), then Ld=I 
[3] (solve using forward substitution 
method); where d is also a 3*3matrix which 
is unknown so far, we can find d matrix 
using L and I.  
Once we find d matrix, we can use d to 
solve the equation UX=d [3]; U and d are 
known, we can use this to compute X, where 
X is also 3*3 matrix used to store result 
(which is inverse of input matrix).  
FORWARD SUBSTITUTION METHOD 
To compute Ld=I[3], we can use this 
forward substitution method (solve the 
linear equation from top to bottom), to split 
the I and d (3*3 matrix) into 3 columns, 
where the coefficients of first row of L 
(1*3), getting multiplied with first column 
of d (3*1) and these Ld is equals to first 
column of I (1*3) i.e.) [1 0 0] to compute 
first column of d matrix value [1]. 
Repeat the above step for each row of L 
with corresponding column of unknown d 
by using each column of I, to compute d 
matrix. 
BACKWARD SUBSTITUTION 
METHOD 

To compute UX=d [3], we can use this 
backward substitution method (solve the 
linear equation from bottom to top), to split 
the d and X (3*3) into 3 columns, where the 
the coefficients of first row of U (1*3) 
getting multiplied with last column of X 

(3*1) and these UX is equals to last column 
of d (1*3) to compute X matrix last column 
values [1]. 
Repeat the above step for each row of U 
with corresponding column of unknown X 
by using each column of I, to compute X 
matrix. 
So, by using the above Forward and 
backward substitution, we can find the 
inverse of input matrix, which is getting 
stored in X matrix. 
Finally, we can check our output by 
multiplying input matrix with the X 
(resultant matrix) as a result we should get I-
identity matrix. 
B. CHOLESKY DECOMPOSTION 

MATRIX INVERSION 

The Cholesky decomposition, is a process of 
breaking down of positive-definite matrix 
into the product of a lower triangular matrix 
and its conjugate transpose, which is 
important for quick numerical solutions in 
linear algebra. The goal of Cholesky 
decomposition is to find a matrix L such 
that: A = L*L(pow)T. where A is the 
original matrix (symmetric and positive-
definite), L is a lower triangular matrix (a 
matrix where all elements above the 
diagonal are zero). L(pow)T is the transpose 
of matrix L. The key points are to start with 
a symmetric, positive-definite matrix A 
(input matrix). The matrix L is lower 
triangular, means all elements above the 
main diagonal are zero. calculate the lower 
triangular matrix L, such that 
A=L×L(pow)T. Once we have the lower 
triangular matrix L from Cholesky 
decomposition, we can find the inverse of A 
by using Forward and Backward 
substitution. 

 



   
 

   
 

 

Fig: Flowchart of Cholesky 
Decomposition  

CHOLESKY DECOMPOSTION 
ALGORITHM EXPLANATION 

A – Input matrix, L – Lower Triangular 
matrix, L(pow)T – Transpose of matrix L 

For example, consider A matrix – 3*3 
matrix, Factorized A into L and L(pow)T. 

Steps to find the Lower Triangular 
Matrix as follows 

Step 1: The input matrix A must be 
symmetric (A=A(pow)T) and positive-
definite (all eigenvalues are positive). A 
positive definite matrix is required in 
Cholesky decomposition because it ensures 
that all values along the diagonal of the 
resulting lower triangular matrix L are real, 
positive numbers. To check if this matrix is 
positive definite, test whether x(pow)T. Ax 
> 0 for any non-zero vector x.   

For example: x= [1,1] ;  x(pow)T = [1,1] ;  
A = [{2,1},{1,2}]  

A. x = [{2,1}, {1,2}]. [1 ,1] = [3,3];  

x(pow)T. A. x = [1,1]. [3,3] = 6 (which is 
positive.) 

Step 2: To find the Lower Triangular 
Matrix, create an empty L matrix of size 
3*3, initially filled with zeros. This matrix 
will eventually contain the lower triangular 
elements. To Fill the matrix L, begin with 
the first row and move downwards, filling in 
the elements of L row by row: 

For diagonal elements (where row index 
equals column index where i == j), L[i][i] 
must be chosen such that when L is 
multiplied by L^T, it produces the element 
A[i][i] in the corresponding position. This 
means summing the products of all the 
previous values in the ith row and ith 
column of L (all values up to L[i−1] [i−1] 
and earlier), and then subtracting that from 
A[i][i]. This guarantees the diagonal element 
is correctly set. 

        For off-diagonal elements (where row 
index is greater than column index (where 
i>j), calculate it by subtracting the sum of 
products of the elements of row i and 
column j in L from A[i][j], and then divide 
by L[j][j] (the previously computed diagonal 
element). 

For instance: 3*3 Lower triangular matrix L 
= [{L11, 0, 0}, {L21, L22, 0}, {L31, L32, 
L33}] 

START 

 input matrix A , Lower Tria matrix L 
Transpose matrix  L^T 

Decompose A into L and L^T. 

Iterate over rows i = 1 to n.Diagonal  

ElementCalculation (where 
i==j)Check for the condition L[i][i] 

based on L*LT =A 

    

Off-Diagonal Element Calculation for 
L[i][j], if i > j Set L[i][j] = (A[i][j] - sum) / 

L[j][j].  

Solve L ⋅ y= b for ForwardSubstitution, 
L^ T.x = Y for BackwardSubstitution. 

check A.A^-1 = I 

STOP 



   
 

   
 

First Row (i = 0): You calculate only L11 
because other entries in this row would be 
upper triangular and are therefore zero. 

Second Row (i = 1): You calculate L21 (off-
diagonal) and L22 (diagonal). 

Third Row (i = 2): You calculate L31, L32, 
and L33. After filling in all elements of L, 
multiply L with its transpose LT. If the 
result equals the original matrix A, the 
decomposition is complete and correct. 

Step 3: Once we have the lower triangular 
matrix L from the Cholesky decomposition 
of A, we can use it to find the inverse of A 
which involves solving two systems of 
equations (forward and backward 
substitution) for each column of the identity 
matrix to build the inverse of A. 

Forward Substitution - Let us consider the 
equation AX = b, where A = L.L(pow)T      
So L. L(pow)T. X = b where L(pow)T = y. 
Therefore L*y = b to get b. where L is a 
lower triangular matrix, y is the vector we 
want to solve for, and b is a column vector 
from the identity matrix I. Since L is lower 
triangular, forward substitution allows us to 
solve for each element of y in sequence, 
from top to bottom, because each row only 
depends on the elements that have already 
been calculated. Suppose we have matrix L 
= [{2,0,0}; {3,4,0}, {1, -1,5}]; b = [1,0,0]  

solve y1 = 2y1.1 => y1 =½, similarly y2 = 
3y1+4y2 =0; 3.1/2 + 4y2 = 0 => y2 = -3/8 

Solve y3 = 1y1 −1y2 +5y3 =0; ½ + 3/8 + 
5y3 = 0 =>y3 = -7/40 

Backward Substitution – L(pow)T*x = y 
once we have the vector y from the forward 
substitution, we solve for x in the equation 
L(pow)T*x=y to get x. This is done using 
backward substitution, which is similar to 
forward substitution but starts from the last 
element and works upwards. By performing 
these steps for each column of the identity 
matrix, we get the inverse of A. Now we 
have matrix L^T = [{2,3,1}; {0,4, -1}; 

{0,0,5}]; y = [½, -3/8, -7/40]; L^T*x =y for 
x = [x1, x2, x3] based on the above input 
matrices, we solve each row from the 
bottom up, to get the values of x. 

C. PARALLELISATION 
STRATEGY FOR LU 
DECOMPOSITION MATRIX 
INVERSION-MAP PATTERN 

            After initialization and 
decomposition of A into L and U, I am 
planning to use Intel TBB parallel_for 
(map pattern) [5] for Forward 
substitution to solve L*d=I-> to get d, 
backward substitution to solve UX=d->to 
compute X(output); and verification of 
A*X=I. 

DECOMPOSING A INTO L AND U: 
parallel_for-row 

FORWARD AND BACKWARD 
SUBSTITUTION: parallel_for-column 

Let's consider the scheduler divides task A 
[3][3] into 3 subranges-3 elements in each 
subrange in case of using parallel_for(map 
pattern) [5]. 

 

subrange 

value 

ranges from 

0-2 

subrange 

value 

ranges from 

3-5 

subrange 

value 

ranges 

from 6-8 

Ma

p 

N*N, where N is 3 

N 



   
 

   
 

Fig. 2 depicts one possible parallel 
implementation of the map pattern for 
LU and Cholesky Decomposition. 
 
For forward, backward substitution, refer 
above diagram, main task may get divided 
into 3 tasks ( theses 3 tasks will run in 
parallel however each task will run 
sequentially inside it), so each task may 
handle each column values (as explained in 
STEP 3: flowchart explanation) to compute 
d*X from L*d=I; UX=d; where L, I- for 
forward and U, d-for backward, matrices are 
shared among 3 tasks, but these tasks won't 
modify/update the L, I in forward and U, d 
in backward, it will just read values from L 
and I, and U and d to compute d [3][3] and 
X [3][3]so that we can prevent the race 
condition. 
 
D. PARALLELISATION 
STRATEGY FOR LU 
DECOMPOSITION MATRIX 

INVERSION-PARALLEL PIPELINE 

After initialization and decomposition of A 
into L and U, we used Intel TBB parallel 
pipeline, Forward substitution to get d, 
backward substitution to compute X(output). 

We have implemented the forward and 
backward substitution by using parallel 
pipeline. 

• First stage: Giving columns indices 
as input  

• Second stage: Forward substitution 
to compute intermediate matrix(d) 

• Third stage: Backward substitution 
to compute inverse matrix(x) using 
intermediate matrix(d) from forward 
substitution. 

PIPELINE IMPLEMENTATION 

We have given number of token as 16, in the 
first stage 16 columns indices will be 
processed and given as an input to the 

second stage where the forward substitution 
will solve 16 columns in  parallel to 
compute the intermediate matrix (d) and 
once the each columns is processed it will be 
send as an input to the final stage where 
backward substitution takes place to 
compute inverse matrix(x) using 
intermediate matrix(d) values from previous 
stage like this till the column values reaches 
the size of given matrix this process will 
continue to compute the inverse. 

Fig. 2 depicts one possible parallel 
implementation of the parallel pipeline 
for LU Decomposition. 
 

E. PARALLELISATION 

STRATEGY FOR CHOLESKY 
DECOMPOSITION MATRIX  

After initialization and decomposition of A 
into L and L^T, I am planning to use Intel 

TBB parallel_for (map pattern) for 
Foward substitution to solve L.y = b -> to 
get y, backward substitution to solve 
L(pow)T.x=y to get x; and verification of 
A*A^-1=I. 

For forward, backward substitution , refer 
above diagram, main task may get divided 
into 3 tasks ( theses 3 tasks will run in 
parallel however each task will run 
sequentially inside it), so each task may 
handle each column values (as explained in 
STEP 5: flowchart explanation) to compute 
y, x where L, b for forward and L(pow)T, y 
for backward matrices are shared among 3 
tasks, but these tasks won't modify/update 
the L, b in forward and L(pow)T, y in 



   
 

   
 

backward, it will just read values from L and 
b, and L(pow)T and y to compute y [3][3] 
and X [3][3]so that we can prevent the race 
condition. 

For verification of A*A^-1=I, matrix 
multiplication of A and inverse of A may get 
split into 3 tasks and it may in parallel if we 
use the map pattern. 

F. PARALLELISATION STRATEGY 
FOR CHOLESKY DECOMPOSITION 

MATRIX INVERSION-PARALLEL 
PIPELINE 

After initialization, we used Parallel pipeline 
for computing Foward substitution to get Y, 
backward substitution to get X(inverse). We 
use 2 main stages in the Parallel pipeline 
implementation.  

 Stage 1: Generates column indices col 
represents the column of the inverse matrix 
A^-1. 

Stage 2: Compute the inverse of the given 
matrix by doing forward and backward 
substitution by getting the column indices 
from stage1, and it will store the inverse. 

 IMPLEMENTATION OF PIPELINE  

The pipeline implementation involves 2-
stage pipeline. The stage-1 is serial stage, 
which generates col indices, that represents 
the current column to process. The stage-2 is 
parallel stage, it takes the column index (col) 
from Stage 1 and performs the calculations 
to compute the inverse of the column using 
forward and backward substitution. 
Combine the work of forward substitution, 
backward substitution, and assignment to the 
inverse matrix A^-1 in a single stage. Col 1 - 
solve L* y = e, col2- solve L^T*X = Y, col 
3 - store X in the col (column of A^-1).  

For verification of A*A^-1=I, matrix 
multiplication of A and A^-1 are used in 
parallel_for , and these tasks will run in 
parallel and executed simultaneously. 

 

                III. EXPERIMENTAL SETUP 

Once we compute the inverse of the given 
matrix via LU and Cholesky Decomposition 
separately, we have done matrix 
multiplication for the inverse and the input 
matrix, which needs to produce identity 
matrix as an output. For smaller size of 
matrices, we can directly display the inverse 
and the identity matrices and we can check 
but for the larger data it's difficult to do that 
so, we have used MATLAB to verify our 
project implementation output. Once we got 
the identity matrix we have stored that 
identity matrix in a binary file. For LU and 
Cholesky Decomposition, we have created 
the MATLAB script, once the inverse is 
found via MATLAB, by using the inverse 
and the input matrix we have checked 
whether we are getting the identity matrix 
by doing matrix multiplication of those and 
store it in an binary file- result file, and this 
MATLAB script will also get the binary file 
from our implementation-Received file  as 
an input and it will check the whether the 
binary file of what it generated is equal to 
the binary file what it received. We are 
checking SAD-sum of absolute difference, if 
both are same, then we can conclude that 
our result is correct if it shows some 
difference then result is not correct. In 
addition of Sum of absolute differences, we 
checked it via figure too, which will display 
the result of Matlab file, received binary file 
from our code and the difference between 
these two files in a figure. We expected to 
get sum of absolute difference as 0. 

                IV. RESULTS 

We have implemented the LU 
Decomposition in sequential method 
initially, and it took 22 seconds to compute 



   
 

   
 

the inverse of the given matrix for the size 
of 2000*2000.  

Fig: Sequential implementation of LU 
Decomposition- Time to compute inverse 

for different matrix sizes-terminal output. 

We checked our output via MATLAB. 
Below are the figures verifying the result 

.

Fig: Sequential implementation of LU 
Decomposition- MATLAB-Command 

Prompt output shows SAD as 0 for 
different matrix sizes. 

Fig: Sequential implementation of LU 
Decomposition- MATLAB- Figure 
displays, MATLAB, code-Identity matrix 
and its difference of matrix size 

1750*1750. 

 

We implemented LU Decomposition using 
different parallelization strategies such as 
Intell TBB- Parallel_for, and Parallel 
Pipeline which we have learned in our 
course. For LU Decomposition, via 
parallelization strategy we have achieved 
65% performance efficiency compared to 
sequential implementation.  The 
implementation via parallel_for took only 7 
seconds which is more efficient than the 
sequential implementation. Through the 
above different implementation, we have 
achieved the performance via parallelization 
and we gained the output what we have 
expected (the sum of absolute difference as 
0, for different size of square matrices). We 
found that the sequential method of 
implementation works better for the smaller 
size, but for the larger data sizes 
parallelization method shows much better. 



   
 

   
 

Fig: Parallel implementation using 
Parallel_for -LU Decomposition- Time to 
compute inverse for different matrix 
sizes-terminal output. 

We checked our output via MATLAB. 
Below are the figures verifying the result 

Fig: Parallel implementation using 
Parallel_for -LU Decomposition- 
MATLAB-Command Prompt output 
shows SAD as 0 for different matrix sizes. 

Fig: Parallel implementation using 

Parallel_for -LU Decomposition -
MATLAB- Figure displays, MATLAB, 
code-Identity matrix and its difference of 
matrix size 1750*1750. 

We have used larger matrix size for our 
implementation. By analyzing the below 
table, we can say that the performance is 
achieved through parallel processing by 
dividing the instruction stream into a set of 
smaller streams i.e.) thread and distribute 
those threads to multiple cores present in the 
system to gain the efficiency of the system.  
In our system, 4 cores are available we have 
made use of this cores and achieved 
performance efficiently via parallel 
programming. 

     
Programming 

methods 

  Time to 
compute 

inverse 

(in milli-

seconds) 

Speed 
improvemen

t via 
parallelisatio

n in % 

Sequential               4201
7 

- 

Parallel using 
parallel_for 

              1437
8 

65 

Parallel using 
parallel 

pipeline 

14257 66 

 

Table: Timing and performance comparison 

between sequential and different parallel 

implementation of LU Decomposition 

 

 

Code style comments Execution 
time( in 
millisecon

ds) 



   
 

   
 

Sequential      Straightforward 
sequential implementation 
of LU decomposition to find 
inverse for size 2000 

42017 

Intel-TBB- 
Parallel_for 

            Parallelized version 
of LU decomposition to find 
inverse for size 2000  

14378 

Intel-TBB- 
Parallel pipeline 
and 

parallel_for. 

         Parallelised version of 
LU decomposition to find 
inverse for size 2000. 

Below are implemented in 
pipeline stages after 
decomposition of A into L 
and U 

Stage 1: Processing and 
giving Column indices  
Stage 2: Forward 
substitution to find 
intermediate matrix   

Stage 3: Backward 
substitution to find inverse 

matrix. 

14257 

Table: Comparison of various parallel 
approaches of LU Decomposition Matrix 
inversion implementation 

 

 

We have implemented the Cholesky 
Decomposition in sequential method to 
compute the inverse matrix with different 
matrix sizes.  

Fig: Terminal Output - Sequential 
implementation of Cholesky 

Decomposition with different matrix 
sizes. 

We checked our output via MATLAB. 
Below are the figures to verifying the result. 

Fig: Sequential implementation of 
Cholesky Decomposition- MATLAB-
Command Prompt output shows SAD as 
0 for different matrix sizes. 

 

The below figure shows the MATLAB 
Identity matrix (Result), Code Identity 
matrix (Received) and its difference for 
2000*2000 matrix 

Fig: Sequential implementation of 
Cholesky Decomposition.  MATLAB & 
Code-Identity matrix and its difference 

with matrix size of 2000*2000 

We have implemented our project with LU 
and Cholesky decomposition inverse 
algorithms. We use different parallelization 
frameworks like Intel TBB Parallel for and 
Parallel Pipeline that we have learned in 
our course. For implementing Cholesky 
decomposition, I used parallelization 
techniques which allows multiple operations 
to be performed simultaneously, 
significantly reducing the time required to 
compute the inverse of large matrices. 
Parallel algorithms efficiently distribute the 



   
 

   
 

computations across available cores 
minimizing the idle time for processors. By 
using Parallelization in our code, we 
achieved 84% of performance efficiency 
compared to sequential implementation. 
Overall, the sequential method works better 
for smaller workloads but for larger data 
size Parallelization works effectively. 

 

We have implemented the Cholesky 
Decomposition in sequential method to 
compute the inverse matrix with different 
matrix sizes. 

. Fig: Terminal Output - Parallel 
implementation of Cholesky 
Decomposition with different matrix sizes 

 

We checked our output via MATLAB. 
Below are the figures verifying the result 

Fig: Parallel implementation using 
Parallel_for -Cholesky Decomposition- 
MATLAB-Command Prompt output 
shows SAD as 0 for different matrix sizes. 

 

The below figure shows the MATLAB 
Identity matrix (Result), Code Identity 
matrix (Received) and its difference for 
2000*2000 matrix 

Fig: Parallel implementation of Cholesky 
Decomposition.  MATLAB & Code-
Identity matrix and its difference with 
matrix size of 2000*2000 

We have used larger matrix size for our 
implementation. By analyzing the below 
table, we can say that the performance is 
achieved through parallel processing by 
dividing the instruction stream into a set of 
smaller streams i.e.) thread and distribute 
those threads to multiple cores present in the 
system to gain the efficiency of the system.  
In our system, 4 cores are available we have 
made use of this cores and achieved 
performance efficiently via parallel 
programming. 

 

 

 

 

   

     

Programming 

methods 

  Time to 

compute 

inverse 

(in milli-

seconds) 

Speed 

improvemen
t via 

parallelizatio

n in % 

Sequential               1718
0 

- 

Parallel using 
parallel_for 

   

2675 

 

84 



   
 

   
 

Parallel using 
parallel 

pipeline 

 

3015 

 

82 

Table: Timing and performance comparison 
between sequential and different parallel 

implementation of Cholesky Decomposition 

 

Code style comments Execution 

time( in 
millisecon

ds) 

Sequential      Straightforward 
sequential implementation 
of Cholesky decomposition 

to find inverse for size 2000 

17180 

Intel-TBB- 

Parallel_for 

            Parallelized version 
of Cholesky decomposition 
to find inverse for size 2000  

2675 

Intel-TBB- 
Parallel pipeline 
and 

parallel_for. 

         We implemented the 
pipeline in 2 main stages. 
Stage 1: Generates column 
indices, col represents the 
column of the inverse matrix 
A^-1. 
Stage 2: Compute the 
inverse of the given matrix 
by doing forward and 
backward substitution by 
getting the column indices 
from stage1, and it will store 
the inverse 
    

3015 

Table: Comparison of various parallel 
approaches of Cholesky Decomposition 
Matrix inversion implementation 

              

CONCLUSIONS 

Finally, our project demonstrates the huge 
performance advantages obtained through 
parallelizing the LU and Cholesky 
Decomposition matrix inversion algorithms 
using Intell-TBB-parallel_for and pipeline. 
We used parallel programming approaches 
to optimally leverage multi-core computers, 
resulting in significant reductions in 

execution time, when compared to 
sequential methods. The implementation 
successfully solved issues like load 
balancing and synchronization overhead, 
resulting in optimal performance and 
scalability. This initiative not only improves 
the efficiency of inversion processing 
operations but also provides significant 
insights and a solid platform for future 
developments in parallel matrix inversion 
computing. The performance evaluation 
results outlined in this project have 
demonstrated that our project is suitable for 
achieving performance efficiency in matrix 
inversion algorithms through parallel 
programming.  
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