
Sudoku Algorithm using Parallel Processing

Hemchand Kalugotla

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-Mail: kalugotla@oakland.edu

Abstract— Sudoku is a logic-based, combinatorial

number-placement puzzle that has been popular since the

late 20th century. Solving a nxn blocks tends to become

increasingly difficult due to combinatorial explosion. As a

result, a sequential implementation of a Sudoku puzzle

solver can be time consuming. In this project, parallel

implementation of the Sudoku puzzle-solving algorithm

using back tracking is implemented with an aim to reduce

the time to solve puzzle. Concepts of pthreads like

condition variables and mutexes used in this project.

I. INTRODUCTION

A Sudoku puzzle is a nxn grid that contains numbers from

1 to n, with box size of √n x √n. A standard Sudoku

contains 81 cells, in a 9x9 grid and has 9 boxes (3x3 grid).

Example of this is shown in figure 1. The goal of puzzle

game is to fill in the empty cells on board such that each

column, row and box contains every number in the set (1

to 9). Sudoku puzzle usually comes partially filled (clues)

and the difficulty varies on how many clues are provided

along with the location.

Rules of Sudoku are:

• Each number must appear exactly once in each row.

• Each number must appear exactly once in each

column.

• Each number must appear exactly once in each box.

There are many algorithms available to solve puzzle [1].

However, as the size of puzzle gets larger, the

combinational explosion occurs and thus leads to

exponential growth of overall solving time. This

combinational explosion also creates limits to the

properties of Sudokus that can be constructed, analyzed,

and solved. So, this project aims at taking an algorithm and

implementing the Parallelization technique to solve the

puzzle more efficiently. A comparison of time

consumption between sequential and Parallel execution

will be done.

II. METHODOLOGY

A. Algorithms to solve sudoku

There are different algorithms available to solve Sudoku.

Three different algorithms are chosen and one of them is

selected for implementation in this project. Three

different algorithms chosen are: backtrack, rule-based

and Boltzmann machine. A short description is given

below with further in-depth details on algorithm selected

for implementation in the following subsections.

• Rule-based:

This method uses several rules that logically proves that a

square either must have a certain number or roles out

numbers that are impossible (which for instance could lead

to a square with only one possible number). This method is

very similar to how humans solve Sudoku and the rules

used are in fact derived from human solving methods. The

rule-based approach is a heuristic, meaning that all puzzles

cannot be solved by it.

• Boltzmann machine:

 The Boltzmann machine algorithm models Sudoku by

using a constraint solving artificial neural network.

Puzzles are seen as constraints describing which nodes

that cannot be connected to each other. These constraints

are encoded into weights of an artificial neural network

and then solved until a valid solution appears, with active

nodes indicating chosen digits. This algorithm is a

stochastic algorithm in contrast to the other two

algorithms.

• Backtracking:

Backtrack is probably the most basic Sudoku solving

strategy for computer algorithms. This algorithm is a

brute-force method which tries different numbers, and if it

fails it backtracks and tries a different number.

Backtracking uses depth first search because it will

completely explore one branch to a possible solution

before moving to another branch.

B. Algorithm uesd for Project

Among the three algorithms described above,

backtracking algorithm is chosen for project because:

• It guarantees a solution if input puzzle is valid.

• It has exhaustive search involving lot of

iterations. Parallel processing can be used to

reduce number of iterations/times to solve the

puzzle.

Detailed explanation of the algorithm along with the

flowchart and implementation has been shown in the

following sections.

C. Backtracking Algorithm

A common algorithm to solve Sudoku boards is called

backtracking, which is a type of brute-force search. This is

essentially a depth-first search (DFS) by completely

exploring one branch to possible solution before moving to

another branch. The algorithm uses recursive calls on a

test-and-backtrack approach. All the cells of the board will

be visited.

• Upon arriving, if the cell is not empty, it is

skipped. Otherwise, temporary value is assigned

from 1 to 9. In below figure, we can observe that

the cells (0,0) and (0,1) are skipped and that the

value of ‘1’ has been assigned to the next cell (0,3)

 Fig 1: Assign temporary value in first non-empty cell.

• After this, a test is performed to see if the

attempted value is allowed there. This is done by

scanning the 3 dimensions of neighbors, the new

value is compared to all the elements contained in

its row, its column, and its sub square.

• If the test fails, the next value is tested, and the

algorithm repeats the test. If all the values have

been exhausted, the algorithm backtracks to the

previous cell.

• This process is repeated until program finds

element that could potentially exist at the location.

• Once this condition is satisfied, the function is

recursively called to the next location.

 Fig 2: Puzzle after few iterations

• Once there are no unsolved cells, we know that all

the cells have been visited. If no solution was

found, we backtrack one cell and keep trying all

the possibilities on that one by recalling the

recursion.

• This keeps happening until all the possibilities

have been tried out.

Fig 3: Deadlock and backtracking to previous cell

This algorithm is better drawn in the form of a flowchart

and shown the figure 4 below. Details of Sequential and

parallel implementation of this algorithm are mentioned in

follow subsections.

 Fig 4: Flowchart of the algorithm.

D. Sequential approach of Bracktracking algorithm

Algorithm can be easily understood looking at the animation

available in Wikipedia [1]. Sequential implementation is very

simple and can be implemented using a recursive function.

The sequential algorithm is implemented iteratively, and it

simply explores the tree of all the legal candidates'

assignment of each empty cells.

This serial approach has been implemented first and verified

on laptop and on Terasic board. Definition of the function is

shown below:

int solveSudoku ()

{

 int row, col,num;

 if (!findEmptyPosition(&row, &col))

 {

 return 1;

 }

 for (num = 1; num <= SIZE; num++)

 {

 if (isSafe(row, col, num))

 {

 sudokuGrid[row][col] = num

 if (solveSudoku())

 {

 return 1;

 }

 sudokuGrid[row][col] = 0;

 }

 }

 return 0.

}

Input puzzle is hardcoded in the software and needs to be re-

compiled if the input needs to be changed. All the empty cells

needs to be shown as ‘0’ for the algorithm. As shown above,

sequential implementation is very straight forward and makes

use of recursive functions and if the function returns ‘0’, it

fills the current position with ‘0’ and back tracks to the

previous cell.

E. Parallel approach of Bracktracking algorithm

Parallel approach of this algorithm is little tricky as working

on each cell/row/column/block in parallel is difficult. This is

because of following reasons:

• Every cell need to know its peers to make a decision.

So, work done in a thread is dependent on other

threads or must wait till other threads finish the

work.

• It is hard to determine what was the previous step

and backtrack to it if multiple threads are doing

same task.

• Thread may have to create another thread

dynamically making the synchronization more

complex.

Because of these reasons, below shown approach has been

chosen for parallel implementation:

• Create a board for each thread with all permutations

of valid numbers possible.

• Use the boards created as an input for each thread.

This approach chosen is better explained along with

comparison with sequential implementation is shown below:

 Fig 5: Iterations required for Sequential processing.

The puzzle shown in this example has solution in first child

in level 4 on right hand side. Figure 5 shows the details on

how this puzzle is solved using sequential approach.

Algorithm checks all the child nodes in level 4 on left hand

side and then back tracks to level3. As the solution is not

found, it searches for the node in level 2 on the right-hand

side to find the solution.

Fig 6: Iterations required for Parallel processing.

With parallel processing, two threads can be created with

second thread trying to search for the solution on the right-

hand side directly. With this number of iterations required

to solve the puzzle will be less as the second thread solves

puzzle in few steps. So, the time required to find solution

will be less compared to sequential approach.

F. Implementation using pthreads

Since the challenge is to test a very large possibility

space, the use of parallel computing can greatly aid. For

this problem, it has been tested with many threads to solve

sudoku puzzles of different complexity levels. pthreads

has been used as a platform because of its ease of

implementation using the concepts learnt in this

course[5].

The main takes care of creating threads along with the

input puzzle for each thread with all the valid

permutations possible for each empty cell. Every thread

takes its own input puzzle and tries to search for solution.

As soon as one of them solves the problem, it must signal

main along with updating solution. Then main takes care

of printing out the solution and the time it took to solve it

along with canceling other threads that are in process. To

handle synchronization, we used a global variable called

‘puzzle_solved’. When the main function starts, if sets

‘puzzle_solved’ to false. As soon as a thread solves the

puzzle, it sets the variable to true. Meanwhile, in the main

function, after all the threads have been initialized, the

program falls into a while loop. As soon as the barrier is

crossed, we know that a thread has solved the puzzle, so

the solution is print along with the timings and all the

threads are destroyed.

To accomplish this, concepts of mutex and condition

variables learnt in this course has been used. The below

paragraph in this subsection shows some screenshot of

source code used in parallel implementation Below is

screenshot from code showing the declaration and

initialization of global variables, mutex and condition

variables.

If solution is found, threads will:

• Lock Mutex

• Update global variables indicating puzzle solved

along with solution.

• Issue Signal condition that puzzle is solved.

Below is the screenshot of source code used in the project.

Global variable ‘sol’ stores index of thread that solved

puzzle, ‘solution’ has puzzle solution.

Main will:

• Lock Mutex

• Wait until the puzzle is solved by any thread.

All the threads will still be running and trying to find the

solution. As the solution is already available, all these threads

can be canceled, one approach is to use pthead_cancel in

main once solution is obtained. This approach is being

implemented in the project and uses pthread_cancel. Another

approach that is not implemented in the project is to have all

threads exit if puzzle is solved and main can wait till all

threads complete. This can be done by using signal broadcast

and pthread_join in main.

III. EXPERIMENTAL SETUP

Sequential implementation of algorithm is implemented in C

language first on laptop running windows and verified with

multiple puzzles as input. Once the sequential

implementation is working, it has been verified on Terasic

DE2i-150-FPGA development kit. Parallel implementation is

implemented and verified directly on the Terasic board. As

mentioned in above sections, puzzle is hardcoded inside the

source file and need to be compiled if a different puzzle needs

to be solved.

IV. RESULTS

Project has been verified with different input parameters for

a stand sudoku puzzle of 9x9. Input puzzle has been

categorized as Easy, medium, and hard based on the level of

backtracking required to solve. Puzzles have been taken from

the dadsworksheets.com [2]. Results for each of the input

types along with the observations is shown below:

Fig 7: Processing Time comparison for Easy Sudoku

0

50

100

150

200

1 21 41 61 81P
R

O
C

ES
IN

G
 T

IM
E

(M
SE

C
)

NUMBER OF THREADS

Easy Sudoku Puzzle

Observations for Easy sudoku puzzle execution:

• No Backtracking required.

• Processing time for Sequential execution is

98.6usec and 443usec for Parallel processing with 2

threads.

• Search Path for solution is very less, so sequential

approach is better in this case and adding number

of threads increases processing time.

 Fig 8: Processing Time comparison for Medium Sudoku

Observations for Medium Sudoku puzzle:

• Minimal Backtracking required.

• Processing time for Sequential execution is

55.7msec and 1.7msec for Parallel processing with

3 threads.

• Even after the solution is found, time to find the

solution increases:

o Amount of time each thread gets is less if

there are more threads created.

o Overhead in creating threads.

 Fig 9: Processing Time comparison for Hard Sudoku

Observations for Hard Sudoku puzzle:

• Input puzzle has lot of empty grids in the beginning

and multiple backtrackings required to solve the

puzzle.

• Sequential approach took around 3 minutes to solve.

While parallel approach (best) took ~1.5 minutes

• Execution time reduces if the number of input grids

crated is close to the solution.

CONCLUSIONS

Sudoku puzzle game with backtracking algorithm has been

implemented using both sequential and parallel approaches.

Adding number of threads to solve the sudoku puzzle will

reduce the time to solve only if there is a solution found in

search path. If the solution is not found, execution time

increased because of the overhead to create threads. This can

be seen clearly in all the complexity level testing done. For

further research, more efficient thread mechanism can be

created covering the complex cases such as, when a thread

cannot solve the puzzle in its search path, new work can be

assigned to that thread.

REFERENCES

[1] https://en.wikipedia.org/wiki/Sudoku_solving_algorith

ms#Brute-force_algorithm

[2] https://www.dadsworksheets.com/puzzles/sudoku.html

[3] https://alitarhini.wordpress.com/2012/02/27/parallel-
sudoku-solver-algorithm/

[4] https://hpc-tutorials.llnl.gov/posix/

[5] Tutorials from course.

[6] (PDF) Recursive Backtracking for Solving 9*9 Sudoku
Puzzle (researchgate.net)

[7] Depth-first search - Wikipedia

0

20

40

60

80

100

1 21 41 61 81

P
R

O
C

ES
SI

N
G

 T
IM

E
(M

SE
C

)

NUMBER OF THREADS

Medium Sudoku Puzzle

0

50

100

150

200

250

0 20 40 60 80 100

P
R

O
C

ES
IN

G
 T

IM
E

(S
EC

O
N

D
S)

NUMBER OF THREADS

Hard Sudoku Puzzle

https://en.wikipedia.org/wiki/Sudoku_solving_algorithms#Brute-force_algorithm
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms#Brute-force_algorithm
https://www.dadsworksheets.com/puzzles/sudoku.html
https://alitarhini.wordpress.com/2012/02/27/parallel-sudoku-solver-algorithm/
https://alitarhini.wordpress.com/2012/02/27/parallel-sudoku-solver-algorithm/
https://hpc-tutorials.llnl.gov/posix/
https://www.researchgate.net/publication/303553939_Recursive_Backtracking_for_Solving_99_Sudoku_Puzzle
https://www.researchgate.net/publication/303553939_Recursive_Backtracking_for_Solving_99_Sudoku_Puzzle
https://en.wikipedia.org/wiki/Depth-first_search

