Multithreaded Image Processing Tool
ECE 5772 — High Performance Embedded Programming

List of Authors (Mazen Albarazi, Martin Shoraji)

Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, Ml
e-mails; albarazi@oakland.edu, martinshoraji@oakland.edu

Abstract— A parallel implementation of image processing
operations utilizing the Threading Building Blocks (TBB)
library created and compared with a sequential implementation
to express the benefits of multithreaded parallel computing. The
implementation is done on the Terasic DE2i-150 Development
Board. The project includes several image processing
operations such as average blurring, Gaussian blurring, edge
detection, erosion, dilation, and gamma correction. These
operations use concepts such as convolution and multiple other
image processing complex techniques and manipulations. The
project focuses on comparing thoroughly the computation times
of a sequential implementation and the TBB implantation and
explores how the parallel implementation benefits and improves
the efficiency and reduces computation time for large data sets
and on more efficient processors. The code is implemented using
different types of data structures in C++ and utilizes libraries as
needed to implement the parallelization and extract the
computation times. Major findings concluded that parallel
programming is a much more efficient approach than sequential
for image processing. Different factors such as the image size or
number of elements, different processors’ core count and speed
play a significant role in the operation calculation time.

. INTRODUCTION

Image processing is the use of a computer to process
images through an algorithm. Since images are defined in two
dimensions, digital image processing may be modeled in the
form of multidimensional systems such as matrices. The
generation and development of the image processing is
mainly affected by three factors, the device it is run on, the
development of the algorithm, and the application desired.
The Objective was to create an image processing tool that the
user can use for many of the popular filtering and
morphological image operations and compare the processing
times for the different operations in respect to a sequential
and a parallel approach, as well as to different image sizes
and running it on different machines, thus, demonstrating the
efficiency of a multithreaded image processing tool over a
sequential one.

Il. METHODOLOGY

A. Algorithm

Some of the image processing operations used are blur,
which includes three types: 3x3 average blur, 5x5 blur, and

Gaussian blur. Another operation utilized is edge detection.
These operations all use specialized kernels that implement
filtering through the convolution concept. Other operations
utilized are dilation and erosion, which are morphological
operations that also use the convolution concept but also
change the shape of the image by adding to or subtracting
pixels from the original image. Finally, a gamma correction
function is also implemented as part of the project. This
operation is used to change the luminance values for each of
the image pixels.

Below are some examples of the image operations
previously implemented and are explored as part of the
project.

o 3

ALY, >

Figure 1. Gaussian Blur

Three of the operations implemented are focused on a blur
filter. Figure 1 shows one of the three blur filters, the
Gaussian Blur [1], which is a special type of blurring that uses
a Gaussian function for calculating the transformation to
apply to each pixel in the image.

Original image Edge Detected

Figure 2. Edge Detection

Figure 2 shows the edges of an image based on an edge
detection filter [2], which is used to compare the final result
generated by the C++ code with the MATLAB script.

eoneo
00 00

L]
@ & o0&
Figure 3. Erosion and Dilation

Figure 3 shows the erosion and dilation filters
respectively [3] and [4]. Erosion assigns the min value of the
neighborhood to that pixel, while dilation assigns the max
value of the neighborhood to the pixel.

Figure 4. Gamma Correction

Figure 4 shows the Gamma correction for an image [5],
which is used to change the brightness or luminance of the
image according to the following formula and a factor Y =
0.6.

OM=r d (IM)rXZSE
=round | (o=~

The operations implemented are convoluted with the
kernels shown below.

o 1 1 1 0
0o/0 1 0 0

Figure 5. Erosion and Dilation Kernel

3036
36 -3
4 -5 1

Figure 6. Edge Detection Kernel

179 | 19 1/9
179 | 19 1/9

179 19 1/9
Figure 7. 3x3 Average Blur Kernel

1/25 1/25 1/25 1725 1/25
125 1725 1725 1/25 1/25
1/25 1725 1/25 1/25 1/25
125 1725 1725 1/25 1/25

1/25 1725 1/25 1/25 1/25

Figure 8. 5x5 Average Blur Kernel

1 46 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

Figure 9. Gaussian Blur Kernel

The algorithm used for the different image processing
operations is implemented according to the following
flowchart logic.

Read .bif file and
entered number for
image process
operation/image size

operation =
(Default)

Eise
v
f operation = 2
Else
f operation = 3’
Else
Vv
Else
A4
f operation = 5
Ise

[>| raging Blur 5x5
Generate .bof file

Figure 10. Flowchart

Figure 10 shows the logic flowchart used for the
implementation. A binary image file (.bif) is generated by a
desired .jpg from the MATLAB script, then the C++ code
reads the .bif, and gets the input operation number and
desired image size and selects the corresponding operation.
A function is then called utilizing the parallel_for TBB
implementation as well as a function that utilizes the
sequential implementation to compare the processing time. A
binary output file (.bof) is then generated as the final result,
which then is used in the MATLAB script for further
verification.

B. Parallelization Strategy

For the parallelization strategy, parallel_for loop is used
since an operation has to be performed on each individual
pixel, which means multiple pixels could have the same task
performed in parallel. It is ideal since every iteration is

independent, the number of iterations is known due to the
dimensions of the image being known in advance, and every
computation depends particularly on the number of iterations
performed and the input data uses the iteration count as an
index for the operation. The pthreads approach is not used due
to the program functioning with multiple image sizes, and
TBB would take care of assigning the number of threads in a
way that utilize the processor resources more efficiently.

Parallel_for is implemented using a compact lambda
expression [6] which takes the inputs of the convolution
function and calculates the dot product between the image
pixels and the kernel in parallel. This is different than the
sequential approach which calculates the dot product one by
one for each pixel in scope making the calculation time
significantly longer, especially as the size of the image
increases. A different parallel_for approach to parallelize the
inputs and the kernel before doing the dot product was
considered but it created more overhead, which is why the
parallel_for was implemented for the dot product only in this
project.

double conv2D tbb (IMG args convo data

int sX, sY., kX, kY

jouble I K 0

convo_data.SX. sY convo_data.SY
convo data.KY

convo_data.02; sX
convo_data.KX: KY

convo_data.I2; 0
K = convo data.K2: kX

if (!I 0 K return
if (sX sY kX kY return
tbb: :parallel for (int int(sY int 1

tbb: :parallel for (int int(sX int j

conv2DI (convo_data.i.j

return

Figure 11. conv2D_tbb Function

As seen in figure 11, the compact lambda expression
is used in two parallel_for loops to calculate the dot product
in parallel.

int conv2DI (IMG_args convo data. int 1. int §

1 = convo data.I2: 0 = convo data.02. sX = convo_data.SX: sY = convo_data.SY
K « conve_data.K2: kX - convo data.KX: kY - convo data.KY

int ®m, n. mm, nn
int KCX, kCY
double sum

nt1I, 31

0(sX*i « j] = sum
return

Figure 12. conv2DI Function

Figure 12 shows the convolution function utilized in
the parallel_for compcat lambda expression shown in figure
11.

I1l. EXPERIMENTAL SETUP

The project is implemented on three different devices that
have different processors: Intel Atom Dual Core Processor
N2600 @1.6GHz (Terasic DE2i-150 board), Intel Core i5-
6200U 2-Core Processor @2.30GHz, and AMD Ryzen 9
5900X 12-Core Processor CPU @3.70GHz.

A C++ function is used to output and compare the
processing time results for the sequential and parallel
implementation on the terminal, verify the expected outcome
that the parallel approach is faster than the sequential one,
and to generate .bof files that are used for the MATLAB
script.

The MATLAB script generates the .bif files that are
needed for the C++ code. It also includes an implementation
of the different image processing operations mentioned,
which are then compared to the .bof output files generated
from the C++ code to output the different image results and
to confirm and verify successful implementation.

IV. RESULTS

The processing time data for each of the different
operations and the different image sizes were collected to
verify that the TBB parallel approach was faster than the
sequential approach.

Figure 13. Output on Terminal

Figure 13 shows the processing time output on the
terminal for both the sequential and TBB approaches. The first
run shows the execution command with one argument
“imgProcess”, which warns the user of the modifiers that can
be used, and assigns default values for the modifiers, which
are chosen to be 1 for modifier 1, and 3 for modifier 2.
Modifier 1 is used for the operation number, while modifier 2
is used for the image size. The second run shows the command
with the input users for both modifiers. The results are then
tabulated accordingly.

480 x 307 IMAGE (147,360 ELEMENTS)

Table 1 - Intel Atom Dual Core Processor N2600 @1.6GHz
(Terasic DE2i-150 board)

Operation Dilation | Erosion | Gamma Edg:e 3x3 Blur | 5x5 Blur Gaussian
Detection Blur
S tial (us) | 51700 50551 85083 45041 36565 60768 69335
TBB (us) 39357 48011 66159 36504 28333 49396 50005

Table 2 - Intel Core i5-6200U 2-Core Processor @2.30GHz

Operation Dilation | Erosion | Gamma Edg? 3x3 Blur | 5x5 Blur Gaussian
Detection Blur
ial (us) | 12331 7470 10197 6360 6149 9809 11508
TBB (us) 10618 5848 5017 5554 5710 7564 8799

Table 3 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz
Operation Dilation | Erosion | Gamma Edg? 3x3 Blur | 5x5 Blur Gaussian
Detection Blur
S ial (us) | 2266 3208 1624 1917 1859 2610 2762
TBB (us) 2069 2288 1371 1685 1465 2120 2161

640 x 410 Image (565,880 elements)

Table 4 - Intel Atom Dual Core Processor N2600 @1.6GHz
(Terasic DE2i-150 board)

Operation Dilation | Erosion | Gamma Edg‘? 3x3 Blur | 5x5 Blur Gaussian
Detection Blur
Sequential (us) | 90465 85517 146165 74248 75777 100853 110525
TBB (us) 78079 66223 106778 63271 64053 98834 103006

Table 5 - Intel Core i5-6200U 2-Core Processor @2.30GHz

Operation Dilation | Erosion | Gamma Edg:: 3x3 Blur | 535 Blur Gaussian
Detection Blur
ial (us) | 14426 16097 11604 12222 10274 17111 16025
TBB (us) 9836 11911 9025 8333 7716 12507 12567

Table 6 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz
Operation Dilation | Erosion | Gamma Edg:e 3x3 Blur | 5x5 Blur Gaussian
Detection Blur
ial (us) | 4004 5659 2800 3025 2470 4727 4820
TBB (ps) 2319 2363 2337 2596 2266 2265 2409

940 x 602 Image (565,880 elements)

Table 7 - Intel Atom Dual Core Processor N2600 @1.6GHz

(Terasic DE2i-150 board)

1920 x 1230 Image (2,361,600 elements)

Table 13 - Intel Atom Dual Core Processor N2600
@1.6GHz (Terasic DE2i-150 board)

Operation Dilation | Erosion | Gamma Edg? 3x3 Blur | 5x5Blur Gaussian Operation Dilation | Erosion | Gamma Edg:& 3x3 Blur | 5x5Blur Gaussian
Detection Blur Detection Blur
S ial (us) | 177845 | 191801 | 328897 140795 147901 243157 283595 S ial (us) | 745256 | 697655 | 1207770 523887 515310 908358 939032
TBB (us) 128292 | 120701 192432 107801 114298 178997 200896 TBB (us) 355341 | 357881 524633 443125 416930 595624 625761

Table 8 - Intel Core i5-6200U 2-Core Processor @2.30GHz

Operation Dilation | Erosion | Gamma Edg‘e 3x3Blur | 5x5 Blur Gaussian
Detection Blur
S tial (us) | 27416 30031 17240 17475 17134 28852 33812
TBB (ps) 19353 17440 10458 15182 14148 24364 27536

Table 9 - AMD Ryzen 9 5900X 12-Core Processor CPU

Table 14 - Intel Core i5-6200U 2-Core Processor

@2.30GHz
. o . Edge Gaussian
Operation Dilation | Erosion | Gamma . 3x3 Blur | 5x5 Blur
Detection Blur
Sequential (us) | 112791 | 140199 74927 70594 71998 127611 140309
TBB (us) 64426 82672 50029 54101 52634 94642 109570

@3.70GHz Table 15 - AMD Ryzen 9 5900X 12-Core Processor CPU
Operation Dilation | Erosion | Gamma Edg? 3x3 Blur | 5x5 Blur Gaussian @3 B 70G H Z
Detection Blur Edge Gaussian
Seq ial (us) | 8518 12086 6033 6235 4992 0565 10336 Operation Dilation | Erosion | Gamma Detection 3x3 Blur | 5x5 Blur Blur
BB (1s) 3057 | 3572 | 2630 4437 2939 3542 3631 al (us) | 35190 | 50627 | 25496 | 25092 | 20943 | 37405 | 4106l
TBB (us) 7074 7298 52634 5076 6847 8619 8852

1280 x 820 Image (1,049,600 elements)

Table 10 - Intel Atom Dual Core Processor N2600
@1.6GHz (Terasic DE2i-150 board)

Operation Dilation | Erosion | Gamma Edg? 3x3 Blur | 5x5 Blur Gaussian
Detection Blur
Seqs ial (us) | 349611 | 319996 | 581107 273305 260267 410755 398574
TBB (us) 158223 | 155130 | 344743 250129 256296 260017 297251

Table 11 - Intel Core i5-6200U 2-Core Processor

@2.30GHz
. o . Edge Gaussian
Operation Dilation | Erosion | Gamma ., 3x3 Blur | 5x5 Blur
Detection Blur
S tial (us) [53153 57552 38139 34844 36914 57270 55719
TBB (ps) 31935 45404 19288 29905 26942 46209 45081

Table 12 - AMD Ryzen 9 5900X 12-Core Processor CPU

@3.70GHz
. _— . Edge Gaussian
Operation Dilation | Erosion | Gamma . 3x3Blur | 5x5 Blur
Detection Blur
ial (us) | 15635 | 22347 11271 10946 8898 17344 17437
TBB (us) 4365 4644 3171 5837 4034 4753 5325

As seen from the data collected from tables 1-15, TBB
beats sequential in speed in all cases. As the filter becomes
more complex, the calculation time increases. As seen in
table 1, the time for the 5x5 blur is much higher than the 3x3
kernel, however, the TBB implementation decreases the
calculation time. As seen in table 13, as the image size
increases, so does the calculation time of the operation. This
can be seen between tables 7 and 10, where the time of the
operation is roughly doubled due to the amount of input
elements being doubled. However, as seen in table 13, the
ratio between the speed of the TBB implementation vs the
sequential increases tremendously being more than twice as
fast. Finally, another observation after testing on multiple
devices is that, as the processor core count and speed
increase, the time it takes for both the sequential and TBB
calculations decrease significantly, however the difference
between them is much higher as the TBB becomes more
efficient.

Figure 16. Dilation

Figure 17. Erosion

Figure 22. Gaussian Blur

Figure 14 shows the original input image that was used to
implement the operations on [7]. Figure 15 shows the
grayscale image generated in MATLAB. Figures 16 — 22
show the different image processing operations applied,
which are generated in MATLAB using the output .bof files
from the C++ code and compared to the images generated
using the MATLAB functions.

Results conclude that TBB is faster/better than sequential
in image processing operations. As image size or number of
elements increase, processing time increases and TBB
becomes much more efficient than sequential. As the count
of the process cores and speed increase, the computation time
for the operation decreases.

CONCLUSIONS

In summary, parallel programming is a much more
efficient approach than sequential for image processing.
Different factors such as the image size or number of
elements, different processors’ core count and speed play a
significant role in the operation calculation time.

Future improvements include additional image
processing operations and performing multiple operations
consecutively to do more complex applications such as object
detection which would utilize multiple different kernels. A
MATLAB script could then be improved to convert a .bof file

generated from the C++ code back to a .bif file that the code
can use again to perform the next operation. To improve the
parallel strategy, a parallel pipeline could be used to assist in
indexing the input pixels concurrently, which would not
speed up the calculation time of the operation itself, but could
improve the loading time for very large images. Finally, a
Graphical User Interface (GUI) can be implemented for a
more user-friendly image processing tool.

REFERENCES

[1] Scott Rome, “Why blurring an image is similar to warming your coffee,”
Scott Rome, https://srome.github.io/Why-Blurring-an-Image-is-
Similar-to-Warming-Your-Coffee/ (accessed Dec. 10, 2023).

[2] Edge detection of image using opencv (CV2) in Python,
https://www.includehelp.com/python/edge-detection-of-image-using-
opencv-cv2.aspx (accessed Dec. 10, 2023).

[3] “Erosion,” Morphology - Erosion,
https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm (accessed Dec.
10, 2023).

[4] “Dilation,” Morphology - Dilation,
https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.ntm (accessed Dec.
10, 2023).

[5] “Imadjust,” MathWorks,
https://www.mathworks.com/help/images/gamma-correction.html
(accessed Dec. 10, 2023).

[6] D. L. Obregon, TBB: parallel_for, Tutorial 5,
https://www.secs.oakland.edu/~llamocca/Tutorials/Emb_Intel/Tutoria
19%20-%20Unit%205.pdf (accessed Nov. 15, 2023).

[7] “New Deck for chanhassen couple,” Iron River Construction,
https://ironriverco.com/featured-projects/new-deck-gives-chanhassen-
couple-space-to-host-outdoors/ (accessed Dec. 10, 2023).

