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Abstract——For this project we will read sample CAN data 

from a test file and perform calculations in C++ using the data. 

We will compute the minimum, maximum, and average values 

for the signals. Acceleration will also be computed using vehicle 

speed at certain times. Acceleration results will be used to 

analyze the driving patterns and find periods of hard braking 

and hard acceleration. Additionally, histograms will be 

computed for engine speed, vehicle speed, and acceleration. We 

will perform these computations using a sequential and parallel 

approach to compare computation time. The parallel approach 

will be done using Intel’s oneAPI Threading Building Blocks. 

Additionally, a MATLAB script will be created to verify the 

computational accuracy of the C++ programs.  

I. INTRODUCTION 

In the landscape of automotive technology, the efficient 
analysis of Controller Area Network (CAN) data plays a 
pivotal role in understanding and optimizing vehicle 
performance. This project shows the capabilities of C++ 
programming in handling and interpreting CAN data. As 
vehicles become increasingly sophisticated, the need for 
robust data processing tools becomes more apparent, and this 
project addresses this demand by employing a parallelization 
strategy. The utilization of a multi-stage pipeline and 
parallel_for loops not only exemplifies the power of C++ 
programming and its potential in optimizing performance for 
automotive data analysis. 

The findings presented in this project come from the 
analysis conducted on two distinct processors—a 6-core Intel 
i7-9750H and an Intel Atom N2600. The strategic 
implementation of Intel's Threading Building Blocks (TBB) 
approach yields reductions in computation times, highlighting 
the effectiveness of parallel computing strategies in enhancing 
overall computational efficiency. The incorporation of a 
MATLAB script verification process adds an extra layer of 
confidence in the accuracy and reliability of the C++ 
programs.  

II. METHODOLOGY 

A. Data Collection 

Data was collected from the controller area network 
(CAN) of a 2012 Chevrolet Malibu. The standard on-board 
diagnostics services were used to collect certain information. 
ODB-II offers service 0x01 (show current data) with 
parameter identifiers (PID) to specify requested data. Vehicle 

data recorded was engine coolant temperature (PID 0x05), 
engine speed (PID 0x0C), vehicle speed (PID 0x0D), fuel tank 
level input (PID 0x2F), and distance traveled since diagnostic 
trouble codes (DTCs) were cleared (PID 0x31).  

The method of data collected utilized a few different tools. 
The first being Tracetronic’s ECU-TEST software connected 
with a PEAK Systems PCAN-USB tool. Using ECU-TEST a 
test case was created to first clear DTCs and request each 
signal with a 100-millisecond delay between each request to 
give the engine control module enough time to respond. This 
part of the loop ran during the entire length of the drive.  ECU-
TEST records all data on the bus while this testcase is active 
and places the data in a text file.  

To analyze the text file and filter out unwanted data, a 
simple Python script was used. The Python script would then 
generate a new text file with the data formatted into three 
columns: timestamp, identifier, data value. This text file 
would be read into the C++ program to be further analyzed.  

B. Common Set-Up 

      As described above, there is data from five PIDs/signals 

stored in an input text file. The program first creates five 

variables of the data type of a user defined structure called 

DATA1. DATA1 includes arrays fields for data, PID, 

timestamp, and an individual variable for datalength. The 

program first opens the text file, counts the number of each 

of the five PIDs, and stores that number in the datalength 

variable for each PID structure. As part of the input from the 

user, the program collects an input called n_multiplier. This 

is how many times the user would like to copy the data from 

the text file, to have a sufficient data size to ultimately 

compare computation times. This means that the structures 

that hold the data are dynamically allocated to hold input 

datalength of that PID multiplied by n_multiplier. Now that 

memory has been properly allocated, the program can reopen 

the text file and read the entirety of text file, sorting by PID. 

Next, the program uses the duplicateArray function to copy 

the original data into the empty locations previously 

allocated. This copy and paste process is repeated 

n*multiplier times. So, if the input data from the text file was 

{1,2,3,4} and n*multiplier was 2; the data array would look 

like {1,2,3,4,1,2,3,4} after this step was complete. Finally, 

memory was allocated for the results of the computations. 



This included locations for acceleration and the three 

histogram results.  

C. Sequential Approach 

With the sequential approach, set-up is complete, and 

computations can be implemented. The first set of 

calculations is the maximum vehicle speed, maximum engine 

speed, maximum engine coolant temperature, maximum fuel 

level, maximum distance travelled, minimums for every 

signal, and averages for every signal. The maximums and 

minimum functions simply implements a for loop that 

compares every data point and keeps the max or min. The 

average function uses a for loop to add every data point and 

divides the datalength. The next set of calculations is the 

acceleration data. Since the DATA1 structure keeps a 

timestamp for every data point in addition to the normal data, 

the acceleration can be computed as change in vehicle speed 

over change in time (*3.6 to get result in m/(s^2)). The 

accelerations are chunked off into sets of 100, since the data 

is sampled every 0.1 seconds the chunks are 10 seconds long. 

The maximum and minimum of each chunk is computed. 

Finally, these numbers are compared to 2.7 m/(s^2) and -5.4 

m/(s^2), respectively, to see if the 10 second segment should 

be categorized as a hard breaking event, hard acceleration 

event, or good driving event. The final stage of the sequential 

calculations involves finding the histogram of engine speed, 

vehicle speed, and acceleration. Engine speed has a range of 

0 to 8000 rpms with bins every 500 rpms. Vehicle speed has 

a range of 0 to 160 km/hr with bins every 10 km/hr. 

Acceleration has a value of -10 m/(s^2) to 10 m/(s^2) with 

bins every 1 m/(s^2). This concludes the sequential 

computations.  

D. TBB Approach 

The same calculations just described in the sequential 
approach section are done with the TBB approach. However, 
this approach uses many instances of parallelization. First 
some extra memory must be allocated for the TBB approach. 
This includes a 2-D array called A that simply stacks the 
engine speed, vehicle speed, ECT, fuel level, and distance 
travelled data on top of each other. This is done so the 
parallel_for in part two has an easy way to pass the data to 
function it calls. Additionally, memory must be allocated for 
the partial histograms. There is a user input nt which is the 
number of partial histograms that the user wishes to compute 
in an attempt to optimize the program. The memory allocation 
uses the nt input to allocate the correct amount. The 
parallelization will be broken down into three parts: a four-
stage parallel pipeline which deals with the acceleration data, 
the main parallel_for loop which deals with the min, max, and 
calculations in addition to partial histograms for the final 
histograms, and a parallel reduction which is used in the 
calculation of every final histogram.  

Beginning with the parallel pipeline, let’s dive into figure 
1. The parallel pipeline is broken up into 4 stages. The first is 
a serial_in_order stage that has input parameters that include 
pointers to the vehicle speed data vector, vehicle speed 

timestamp vector, acceleration vector (currently empty), and 
an int for datalength. Stage 1 packages this all up into groups 
of 100 and passes it off to stage 2 in an object of class Vehicle 
Speed. Stage 2 is a parallel stage which does the computation 
for acceleration. With the information received from stage 1, 
stage 2 can compute acceleration as the change in vehicle 
speed over the change in time (*3.6 to get result in m/(s^2)). 
It also knows where to store this acceleration data and sends 
the pointer to stage 3. Stage 3 is a serial_in_order stage that 
takes the acceleration data for the package of 100 and 
computes the maximum and minimum value out of that 100. 
It then wraps them up into an object of class 
MIN_AND_MAX and sends to stage 4. Stage 4 compares the 
min and max to -5.4 and 2.7, respectively, to make 
classifications for hard braking and hard accelerations events. 
This concudes the parallel pipeline.  

The second part of the parallelization is detailed in figures 
2 and 3. It is a parallel_for loop which optimizes the 
calculation of the minimums, maximums, averages, and 
partial histograms. The minimums, maximums, and averages 
all nest a parallel_reduce; the min and max to do multiple 
comparison at once and the average to do many sub-sums at 
once. This means that not only can minimums of different 
signals be computed at once, but multiple comparisons can be 
made at once to find the smallest value. This is all shown in 
figure 2 as the parallel_for loop increments from 0 to 14. 
Finally, figure 3 shows the partial histogram calculations. We 
know that the user uses an input nt to request a certain number 
of partial histograms be made. Therefore, as parallel_for loop 
increments from 15 to 15+(nt-1) the partial histograms for 
engine speed are updated. As it increments from 15+(2nt-1) 
the partial histograms for vehicle speed are updated. Finally, 
as it increments from 15+(2nt) to 15+(3nt-1) the partial 
histograms for acceleration are made. This concludes the main 
parallel_for section.  

The last part of the parallelization strategy involves using 
parallel_reduce to combine the partial histograms into one 
final histogram. This means that if nt is equal to 4, engine 
speed partial histogram 1 can be added to partial histogram 2 
while 3 is added to 4, and the results added together. This 
would save one set of the addition operation across the partial 
histogram vector as opposed to doing it sequentially and only 
increases in savings as nt is increased. This partial histogram 
reduction is done for engine speed, vehicle speed, and 
acceleration. The three sets of reductions are optimized within 
but execute sequentially when looking across the bunch. One 
potential improvement area could be implementing a 
parallel_for loop that allows this three reductions to be 
executed in parallel.  

E. Common Clean_up 

To clean up the program, the results computed are printed 
to the terminal. The number of instances of hard acceleration, 
hard breaking and cruising are printed using the 
pipeline_result vector indices 0, 1, and 2 respectively. Next 
the minimum and maximum indexes are assigned to the 
respective signal index variable using the max and min arrays. 
Using the indices, the proper array can be indexed to print out 
the corresponding minimum and maximum value.  



The average values are displayed using the avg array that 
contains the values themselves as opposed to the indices. The 
3 histograms that are outputted as .bofs are printed using the 
bin size variables, max value variables, and histogram arrays 
for the corresponding signal. After the histograms are 
displayed, the vectors are written to .bofs using the fwrite C++ 
function. 

The start and end times are printed as well as the elapsed 
time to compare against both approaches. The start time is 
taken before the actual computations directly after the end of 
the common setup. The end time is taken right before the start 
of the common clean up.  

The last step is to free the dynamically allocated memory 
by using the free C++ function.  

 

III. EXPERIMENTAL SETUP 

A MATLAB program is used to verify results of the C++ 
program. The MATLAB program reads the same data text file 
that is used in the C++ program. Using the table2array 
function and indexing the correct column of the table, three 
arrays are created for time, identifier, and data value. The data 
value array is split into five arrays corresponding to the PID. 
Using these arrays, the minimum, maximum, and average 
values are found using the built in min, max, and mean 
MATLAB functions and printed to the terminal.  

The acceleration is found using the same algorithm of 
point slope formula used in the C++ program. This is done by 
finding the rows of the data table where the PID is equal to 13 
and storing the time stamps in these rows into a new time 
vector labeled time_speed. To create a vector of the time 
difference between each point, the diff MATLAB function 
was used on both the time_speed vector and the speed_values 
vector and stored in dt and dv respectively. Using dt and dt, 
acceleration can easily be computed using the element-wise 
division ./  of dv over dt with dt multiplied by 3.6 to covert to 
meters per second. Next to verify the driving flags given by 
the C++ program, the instances of hard acceleration and 
deceleration are found. This can be done by setting a 
group_size of 100 which is equivalent to the length of the 
arrays that are fed into the parallel pipeline. The number of 
groups is found by taking the floor of the acceleration vector 
length divided by the group_size. Using the number of groups, 
two zero arrays are created for minimum acceleration and 
maximum acceleration. Next a loop iterates from 1 to 
num_groups setting start_idx equal to the current iteration 
minus 1 multiplied by the group size plus 1.  An end index is 
created as the current iteration multiplied by group. This 
allows the acceleration vector to be broken into segments of 
100 values. The maximum and minimum values of each 
segment are stored in the max_acceleration and 
min_acceleration variables. The maximum and maximum 
values are narrowed down further to minimum values less 
than -5.4 and maximum values greater than 2.7. The lengths 
of the filtered minimum and maximum vectors indicate the 
number of hard acceleration and hard deceleration.  

The last verification calculations needed are the 
generations of histograms. 6 histograms are made for data 
values of RPM, speed, ECT, distance traveled, fuel 

percentage, and acceleration. The histogram MATLAB 
function with parameters of the corresponding data vectors 
and bins is used to create the histograms. The last 3 histograms 
are generated by reading in the binary output files (.bof) from 
the C++ program. The fopen and fread MATLAB functions 
are used to read in the files and extract the data. By comparing 
all the histograms, the accuracy of the C++ program can be 
verified. 

IV. RESULTS 

To compare the sequential programming approach and the 
TBB program approach, each program was run multiple times 
with varying parameters. The sequential program was run 
with the parameter of n_multiplier equal to 1 through 10 as 
well as 20 and 50. The TBB program was run with the same 
n_multiplier values but at each value, the parameter indicating 
the number of partial histograms is incremented from 1 to 10. 
The table with results from a 6 core Intel i7-9750H are shown 
in Table 1. The results from the Terasic DE2i-150 FPGA 
Development kit using the Intel Atom N2600 processor are 
shown in Table 2.  

 

 
Table 1 – Computation times for Intel i7-9750H 

 

 
Table 2 - Computation times for Intel N2600 

 



Table 1 and Table 2 show how dominate the TBB 
approach is especially for larger values of n_multiplier. The 
processing time of the N2600 for 6 million elements and 
optimal number of partial histograms (10) takes about 665 
milliseconds to process where the same calculations using a 
sequential approach takes 917 milliseconds which is roughly 
a 38% increase.  

A line graph showing the computation times as 
n_multiplier increases for a 6 core Intel i7-9750H, and 4 
partial histograms is shown in graph 1. This shows that even 
for small values of n_multiplier, TBB is the optimal approach.  

 

 
Graph 1 – Sequential vs TBB computation times 

 
 

V. CONCLUSIONS 

      This project dives into automotive data analysis, 

showcasing the versatility of C++ programming in handling 

and interpreting CAN data. The parallelization strategy, 

implemented through a multi-stage pipeline and parallel_for 

loops, showcases the potential for optimizing performance. 

The results obtained from a 6-core Intel i7-9750H and an 

Intel Atom N2600 processor come together to support the 

TBB approach, with significant reductions in computation 

times. Additionally, the verification process using a 

MATLAB script adds an extra layer of confidence in the 

accuracy of the C++ programs, emphasizing the importance 

of cross-validation in data analysis projects. In conclusion, 

this project not only contributes to the field of automotive 

data analysis but also shows the importance of adopting 

parallel computing strategies for enhanced computational 

efficiency. 
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Appendix 

Figure 1 – Parallel Pipeline – TBB Approach Part 1 

 

 

Figure 2 – Main parallel_for – TBB Approach Part 2 

 

Figure 3 – Main parallel_for – TBB Approach Part 2 

 



 
Figure 4 – Parallel Reduction – TBB Approach Part 3 

 

 
Figure 5 – Computational Accuracy Verification for Max, Min, Avg, and Driving Analysis 

 

 

 
Figure 6 – Computational Accuracy Verification for Sequential Histograms with MATLAB (bottom right) 

 



 
Figure 7 – Computational Accuracy Verification for Parallel Histograms with MATLAB (bottom right) 

 


