
Multi-Threaded Basic File
Encryptor and Decryptor Program

Steven Stefanovski and Wendy Fogland
Electrical and Computer Engineering Department

ECE 5772
Fall 2023

Application Overview
Main Goal: Implement a file encryptor/decryptor program utilizing different execution
methods.

Sub-Goal:

- Prove that a higher performance parallel method is possible compared to
sequential execution

Encryption/Cipher Method
● Vigenère Cipher and Caesar Cipher used to encrypt/decrypt the provided text
● Caesar Cipher “shifts” each letter by a given number 1-26

○ A Caesar Cipher with a shift of 2 would turn the text “ABC” into “CDE”

● Vigenère Cipher uses a key to Caesar Cipher each character by a different shift
○ The letters of the key determine how much each character in the input text will shift
○ The letters of the key map A-Z to 1-26
○ The first letter of the input text is shifted by the mapped value of the first letter of the key

■ Second letter of the input is shifted by the value of the 2nd letter of the key, and so on
○ Start from the beginning of the key, if you run out of characters of the key but still have characters

or the input text

Proof of Concept with MATLAB

Parallelization Methods
Pipeline Method

● Expect data to come as 1D-Char Array
● Stage 1

○ Create partitions of whole data array to break up (pipeline) chunks of
data

● Stage 2
○ Encrypt/Decrypt partitions passed through from Stage 1

● Stage 3
○ Concat all partitions back into one char array of the same size as

original data char array

Parallel_For Method

● TBB library does most of the heavy lifting
● Optimizes the amount of threads to use based on amount of

data
● Works similar to a regular for loop

Flowchart of Software

Program Execution Example

https://docs.google.com/file/d/1cu8fmOsWXX8YvMXGDeeU6eIjl9_71UQP/preview

Results & Conclusion

● Parallel_for performed best overall
○ Works great in applications like this, where there is the same, but independent,

operation is performed on each element of the input
● Sequential implementation is still best for small datasets
● Pipeline implementation worst performance

○ Could be due to input data formatting
● Timings averaged over 5 executions

In conclusion, two different parallelization categories were
implemented, but only one improved performance from the
sequential implementation. Parallel_for was well suited for this
application and greatly improved performance with larger file
sizes, but pipelining seemed to struggle.

References
[1] https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

[2] https://www.secs.oakland.edu/~llamocca/emb_intel.html

[3] https://moodle.oakland.edu/pluginfile.php/8893205/mod_resource/content/1/Notes%20-%20Unit%204.pdf

https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://www.secs.oakland.edu/~llamocca/emb_intel.html
https://moodle.oakland.edu/pluginfile.php/8893205/mod_resource/content/1/Notes%20-%20Unit%204.pdf

