An Efficient CPU Implementation of a Genetic
Algorithm for the Travelling Salesman Problem

Alex Fillmore
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, MI
afillmore @oakland.edu

Abstract—This project explores using pthreads as an opti-
mization technique for parallelizing a CPU implementation of
a genetic algorithm that solves the travelling salesman problem.
Pthreads is a successful method for optimizing the algortihm,
speeding up the processing time by sixty percent over the purely
sequential implementation. It is concluded that a parallization
strategy that considers the target processor is a an ideal way to
implement pthreads for algorithm speedup.

Index Terms—Genetic Algorithm, Travelling Salesman, Em-
bedded, Optimization, Multi-thread

I. INTRODUCTION

The Travelling Salesman Problem (TSP) is a historical
problem in the world of computer algorithm optimization,
with exploration of the problem dating back to 1954 [1]. The
problem is a simple one to understand and goes like this: A
salesman wants to travel to a number of cities and then return
home to his starting city. Given the distances between each
pairing of the cities is known, what is the shortest possible
route the salesman can take to travel to each of the cities
exactly once and then return to his home city? While being a
simple problem to understand, finding the best solution to the
problem is significantly more complex.

In fact, the TSP has been shown to be a NP-Hard problem,
meaning that the problem is at least as difficult to solve as
the hardest nondeterministic polynomial time problem [1]. A
naive approach to solving this problem might be to brute force
it by calculating the distance travelled in every possible subset
of the population and checking for the minimum total distance.
However, if we consider that the starting city will always be
the same then for a set of N cities there will be (N-1)! possible
permutations of the order of cities to visit. While this may be
feasible for small data sets, the brute force method quickly
becomes untenable for larger data sets.

Considering the O((N-1)!) time complexity of the brute
force method, it is clear that a more efficient methodology
for finding an optimal solution to the TSP is desirable. This
is where genetic algorithms (GA) may be able to help us.
A genetic algorithm is a evolutionary algorithm that takes
inspiration from biological processes such as evolution and
natural selection to search the solution space of problems
for an optimal solution [2]. Evolutionary algorithms are one
subclass of metaheuristic search algorithms, with other ex-
amples being Particle Swarm Optimization (PSO), Gravita-

tional Search Algorithm (GSA), and Ant Colony Organization
(ACO) [3]. Metaheuristic algorithms in general are meant to
explore the solution space of problems to find good solutions
despite having incomplete information.

Genetic algorithms work by creating a population of poten-
tial solutions to the problem and having the population undergo
change through methods that emulate evolution and natural
selection. The general flow of a genetic algorithm can be seen
in Fig. 1.

N\ N\
Initialize Evaluate Selection
Population Fitness
J J
N\ I\
Stop
Criteria Mutation [~ Crossover
Met?

Fig. 1. Genetic Algorithm Methodology

To begin, we must initialize an arbitrarily sized population
of potential solutions, which we call members of the
population. Typically this population is large to allow for
greater variety in the solutions. A important determiner in
whether a problem can be solved using a genetic algorithm
is whether or not we can formulate a solution to the problem
as what we call a chromosome. For the TSP, a chromosome
of a member might look like the following:

C[15432]

This chromosome outlines the solution to pictured in Fig. 2. In
this case, the salesman begins in city one, then travels to cities
two, four, five, three and then back to city one in that order.
This completes a valid solution to the TSP. In order to initialize
the population, we can just generate random permutations of
the list of all cities.

Once we have initialized a population, we now want
to evaluate the fitness of each of the individual solutions
to quantitatively determine their quality. For the travelling
salesman problem, instead of looking at fitness it is simpler

Fig. 2. A Solution to the TSP

to look at cost. Where a greater fitness is better, a lower cost
is considered. Fitness and cost are the inverse of one another.
To calculate the cost of the TSP, we simply sum the distance
travelled between each of the cities in the solution.

Once the quality of each member of the population is
known, we must select pairs of solutions to produce offspring.
This is the part of the process that emulates natural selection.
To mimic this process, the selection methods of genetic
algorithms need to be biased towards the most fit/least cost
individuals of the population.

Once we have selected parents for the next generation of
solutions, we need to be able to breed them in some way
that the parents can pass on their qualities to the children.
This process is known as crossover. Through crossover, every
member of the population is replaced with a new child
solution.

Finally mutation is performed on select children. Each child
has a random percent chance to mutate, randomly altering their
solution in some way. This is done to introduce variety into
the gene pool, preventing the solutions from converging to
a local minima of the solution space. Without mutation, it is
more likely that the population will converge to a good answer
while never finding its way to the best answer.

Together, these processes make up the genetic algorithm.
By performing this sequence repetitively, the population will
converge to an optimal solution to the problem. However, now
it must be determined when to stop producing new generations.
This is known as stopping criteria. Common stopping criteria
might be after a certain number of generations have passed,
once the fitness has passed a given threshold, or once a
certain percentage of the population has converged to the same
answer.

For optimization, it is important to recognize that at each
stage of the genetic algorithm each of the members of the
population are being operated on individually and don’t have
interdependence. This means that genetic algorithms are a
good target for speedups from parallelization, where in the-
ory each member of the population could be operated on

in total isolation. To accomplish this sort of optimization
in this project, pthreads are used. Pthreads—also known as
POSIX threads—are a parallel execution model for Unix based
systems that enable parallel processing of data on a CPU.

The intent of this project was to develop a sequential im-
plementation of a genetic algorithm for solving the travelling
salesman problem, then explore how pthreads could be used
to optimize the sequential implementation to save execution
time without negatively the quality of results.

II. METHODOLOGY

In this section I will cover the specifics of each of the
stages of the genetic algorithm, how those stages were
implemented in the sequential implementation, and then how
those stages benefited from a parallel implementation with
pthreads.

A. Evaluate Fitness

As mentioned previously, for the TSP cost is typically used
instead of fitness. The cost can easily be calculated for a given
solution by looping through the cities indexes and summing
the distance between successive locations. The distance be-
tween two cities is pre-calculated during initialization and
stored in a 2D array lookup table of size NUMCITIES =x
NUMCITIES where NUMCITIES is the number of cities in
the problem. This loopup table can be indexed by inputting
the two city numbers as the two indexes to the array to find
the distance between the two cities. To find the total cost of a
given solution, we must execute through a for loop summing
the distances a total of NUMCITIES times. Then we must loop
through every member of the population, POPULATIONSIZE,
to get the cost of each individual.

Since the cost of each individual is independent of the
other members of the population, we can parallelize the
fitness evaluation using pthreads by splitting the population
equally into smaller subsets. Then we can spawn threads
using pthreads, with each thread responsible for one of the
subsets of the population. For the case where the number of
threads spawned, a defined constant NUMTHREADS, is four
each thread would operate on a fourth of the population. So
instead of a single for loop executing on the range zero to
POPULATIONSIZE-1, each thread would instead operation
on a fourth of POPULATIONSIZE. This parallelization strat-
egy is visualized in Fig. 3.

In order for each thread to know which fourth of the set
to operate on, we must pass it some parameters. In general,
the method for passing parameters to a pthread instantiation
is to pass it a pointer to a structure that contains all of the
information you want to pass. For this project implementation,
I opted to create a single struct definition that would contain
all of the information any of the thread calls would need. This
structure contains pointers to arrays for storing all pertinent
information, as well as start and end indexes for the threads
to determine the ranges of the population to operate on.

Once the individual cost of each member is known, it is

NUM_THREADS = 4

Population

SR S

1/4 1/4 1/4 1/4

SRR S

Cost

POPULATION_SIZE

Fig. 3. Fitness Evaluation Parallel Strategy

pertinent to find the minimum cost of the entire population
in order to determine whether we have reached a satisfactory
solution yet. Similar to fitness evaluation, this process loops
across the entire population. However, in this case members
of the population must be compared and can’t be operated on
in pure isolation. Therefore, we must use a slightly different
parallelization strategy. We will used what is known as the
reduction approach. The population is still broken into equal
chunks for each thread, but instead of each thread returning
an output for every member of the population each thread
returns the minimum cost of that subset. Then the outputs of
each thread are compared in the main thread to find the global
minimum. This strategy is pictured in Fig. 4.

NUM_THREADS = 4

Cost

\/ v v \
<\<\>~ ‘:</<
\/

Minimum

Fig. 4. Minimum Cost Parallel Strategy

B. Selection

To perform selection, I chose to go with what is known as
a tournament selection. To execute a tournament selection,
I select a random subset of the population with a size of
TOURNAMENTSIZE-a global defined parameter. For a given
subset, the member which has the least cost is chosen to
be a parent. This occurs 2+*POPULATIONSIZE times since
we want to replace every member of the population with
children and each child requires two parents. To parallelize
this stage, a similar strategy of divide and conquer from the
fitness evaluation is used. The required number of parents to

produce is evenly split across each thread.

C. Crossover

Once parents are chosen, we need to combine their infor-
mation in some way to produce a child. This process is known
as crossover. To begin with, each child is initialized with their
first city as 1. The salesman always starts in the same city,
so this much of the solution is given. From their, the rest of
the solution is inherited from the child’s parents. Look at Fig.
5 and suppose that we have two parent solutions P1 and P2.
To find the second city of the child solution, we will pick the
city in position two from the parents that is more optimal.
Because of this step, this implementation is known as greedy
crossover. In the case of Fig. 5, city three is closer to city one
than city five is so the child inherits city three from P2. In the
third position, city four is closer to city three than city two
is so the child inherits from P1. This process continues until
the entire child solution has been filled. In the case where the
city in the parent has already been used in the child, the next
valid city in the parent solution is considered. If there are no
more valid cities left in the parent, the next unused city in the
child is considered.

This process again operates on a single member of the
population at a time, so we use the same parallelization
strategy outlined in Fig. 3 for the fitness evaluation. It is
important to note that one member of the population can serve
as a parent for more than one child, so it is entirely possible
that multiple threads will be accessing the same location of
the parent array at the same time. However, since each thread
is acting only as a reader to the parent array and not a writer
this does not introduce any race conditions to be concerned
with.

P1 1 5 4 2 3

P2 | 1 3 2 5 4

Fig. 5. Crossover Process

D. Mutation

For mutation, the execution is relatively simple. A
global define, MUTATIONCHANCE, determines the percent
chance for any individual child to mutate. In the sequential
implementation, a random number in the range [0,100) is
generated with the library function rand () and if the number
is less than MUTATIONCHANCE then the child mutates. If
a child mutates, then two random indexes are selected and

the city indexes in those positions are swapped. This follows
the same divide and conquer parallelization strategy outlined
for evaluate fitness. An important note for the parallelized
implementation is that rand () is not a multi-thread safe
function and when used in multiple threads will cause race
conditions that hinder performance. Instead, each thread is
passed a unique integer seed and the address of that seed
is used to seed the multithread safe randr (&seed) function.

III. EXPERIMENTAL SETUP

All experiments were conducted on a Terasix DE2i-FPGA
Development Kit board, which includes an Intel Atom N2600
processor. This is a two core processor which can handle up to
four hyperthreads. The code was executed in a Ubuntu Linux
12.04.4 operating system environment on the command line.
Timing reports were build into the codebase, and reported the
average time of each function across ten generations as well as
the average time for the total execution of a single generation.
The parameters in Fig. 6 were kept constant across testing
while the number of threads was varied.

Fixed Parameters
TOURNAMENT_SIZE 128
MUTATION_CHANCE 10%
NUM_GENERATIONS 10
POPULATION_SIZE| 100000

Fig. 6. Fixed Experiment Parameters

IV. RESULTS

The results of the experimental conditions were as reported
in Fig. 7. Tt is clear that the largest time saving over the
sequential implementation came from moving up to having
two threads, with a 54% speedup in execution time. After the
first additional thread however, the performance benefits from
adding more threads are marginal. The best performance came
at twenty threads with a 60% speedup. I suspect there weren’t
much performance gains to be had after the first additional
thread considering the target environment. The target CPU
only has two cores, and therefore is likely to only be able to
truly run two threads in concurrency. Considering these threads
are very compute intensive with little to no waiting time during
which another thread could execute, I am unsuprised by these
results.

Notably, the functions that began with faster execution times
stood to benefit the least from parallelization. Both mutation
and minimum cost started with relatively fast execution times
compared to the other functions, and had worse performance
than the sequential implementation at higher thread counts.
This is likely due to the additional overhead of adding ad-
ditional threads while not having much time to save in the
first place. In fact, all multithreaded runs of the minimum cost
function performed worse than its sequential counterpart. This
is likely due to the fact that it was the quickest function by

far to begin with.

V. CONCLUSIONS

In conclusion, I have found pthreads to be a powerful
tool for optimizing CPU bound applications to minimize
runtime. However, when multithreading an application there
are important factors to consider. What processor is this
program going to run on? It is worthwhile to consider this
when determining the number of threads to launch, as the
processors core count and architecture will directly affect the
number of threads that can compute concurrently. Additionally,
just because you can multithread a function doesn’t mean
you should. Multithreading introduces additional overhead
in order to launch threads, precious time that may not be
worth it as was the case for the minimum cost function.
Finally, the algorithm itself is important to consider when
deciding whether or not to multithread. Genetic algorithms
happen to be highly parallelizable, but that is not the case
in other algorithms where data and functions may be more
interdependent on one another.

REFERENCES

[1] Jiinger, M., Reinelt, G., & Rinaldi, G. (1995). The traveling salesman
problem. Handbooks in operations research and management science, 7,
225-330.

[2] A.Lambora, K. Gupta and K. Chopra, "Genetic Algorithm- A Literature
Review,” 2019 International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019, pp.
380-384, doi: 10.1109/COMITCon.2019.8862255.

[3] M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, ‘“Metaheuristic
Algorithms: A Comprehensive Review,” Computational Intelligence for
Multimedia Big Data on the Cloud with Engineering Applications, pp.
185-231, 2018, doi: https://doi.org/10.1016/b978-0-12-813314-9.00010-
4.

NUM_THREADS (Processing time in us, averaged across 10 generations)

Function Seguenti
al 2 4 6 8 10 20 50 100 200
Selection 4169605/1605586(1402526|1296798|1315613/11324419(1288261|1406318|13827681371027
Crossover 1791997|1160138{1134223|1104464/1078718/1040005| 996470|1042226|1043087|1111122
Mutation 16431 12886 12939 14440 15554 18645 18987 16613 28138 42932
Cost Update 284874 177117 162433 158543 159155 156719 167272 169064 174868 199817
Minimum Cost 1773 2777 4825 3704 5463 4358 8761 18059 23014 38039
Generation
Total 6301773129027 77|2704825/2603T704|12605463|12604356|2508761|12718059|2623014|2738039
Percent
Speedup N/ A 54% 57% 59% 59% 59% 60% 57% 58% 57%

Fig. 7. Timing Results for Varied Thread Counts

