
Convolutional Neural Network with Intel 
Thread Building Blocks

By Joshua Duncan & Matthew Irvine



What is a CNN

● CNNs are a class of deep learning 
neural networks, predominately 
used for processing data with a 
grid-like structure 

● Applications
○ Image Recognition
○ Image Classification
○ Object Detection

● Key Components
○ Training set
○ Convolutional Layers
○ Fully connected network



Training Set Data
● Stored in multiple .bif files

● 10,000 28x28 Images

● 7.84 Million Elements

● Images are of handwritten 
number digits

● 10,000 Expected Outputs

● Corresponds to the expected number



Convolutional Layers

● Grabs first 28x28 image that is stored in a 
.bif file(binary input file)

○ This is the input map
● Contains 6 feature maps
● Each feature map has a distinct 3x3 kernel 

to extract certain features from the image
● 6 Narrow 2D convolutions will be done, 

creating 6 26x26 feature maps
● Bias and Rectified Linear Unit(ReLu) are 

applied to each pixel
● Max pooling is applied to only retain 

important features, outputting the result: 
13x13

Note 1: The ReLu function converts any negative input (x) to zero to introduce 
nonlinearity so the network can learn complex patterns 
Note 2: Bias ensures that if a feature is absent, a given neuron can still be active

First Layer Second Layer
● Takes the 6 pooled outputs from first layer

o These are the input maps
● 16 feature maps 
● 96 kernels(6 for each feature map)
● Convolution will be done to the 6 input 

maps with their distinct kernels
● Once each input map is convoluted, they 

are summed together creating one feature 
map

● Bias and ReLu are then applied to each 
pixel

● Lastly max pooling is applied result: 5x5

Note 3: The convolution descibed is cross convolution since CNNs do not flip the 
kernels





Fully Connected Network
● Fully Connected Network Consists of 3 

layers 
○ 1st layer interprets the features 

extracted by the convolutional layers
○ 2nd layer narrows down the most 

important features
○ 3rd layer serves as the decision making 

component giving us 10 classified 
outputs

*Each of these layers have distinct weights and 
biases



Classified Outputs
● The FCN outputs a vector containing 

10 elements, each corresponding to a 
class label from 0-9

● These elements report the networks 
confidence scores for each of the 10 
possible classes

● The class with the highest confidence 
score is considered the predicted 
class by the FCN



Initial Computation 
time/Accuracy

• The CNN’s accuracy was confirmed to 
be 96.97% meaning 9697/10000 
datasets were accurately guessed by 
the CNN 

• Accuracy was compared to matlab
implementation of CNN

• The elapsed time was found to be 
35.6 seconds on average

Elapsed Time



Opportunities for 
Parallelization



Parallel_For

Elapsed Time
• Since we are dealing with a large dataset 

with 28x28*10,0000 elements, parallel_for 
prevents the linear increase in computation 
time

• Parallel_for would also be beneficial in the 
second layer, since 16 feature maps need to 
be produced

• 2.28x increase cutting computation time in 
half

* Could theoretically use parallel for in the 2d 
convolution calculation itself but the input 
images and kernels are far too small to see any 
benefit

Avg. Time: 15.55s



Parallel_Reduce

Elapsed Time

Avg. Time: 19.17s

● Implemented with parallel_for

● Used to sum convolutions in the 
second layer

● Each convolution is 11x11 or 121 
elements

● There are 6 convolutions total for 
each parallel_reduce call

● Early implementations were slower 
because not enough elements were 
added



(3-stage) Parallel_Pipeline

• In the pipelined implementation 3 stages were used

– Stage 1 – Image loading: Continuously loads 
images sequentially feeding them into the 
pipeline without waiting, allowing for a 
constant stream of data

– Stage 2: - Convolutional Processing: This stage 
applies the first and second convolutional 
layers in parallel and processes multiple 
images simultaneously to extract primary 
features

– Stage 3: FCN stage: This stage operates in 
parallel to compute the final outputs 

Elapsed Time

Avg. Time: 16.11s



(4-stage) Parallel_Pipeline

• In this pipelined implementation 4 stages were 
used

– Stage 1: Image loading: Continuously loads 
images sequentially feeding them into the 
pipeline without waiting allowing for a 
constant stream of data

– Stage 2: Processes the 1st layer to extract the 
primary features like normally

– Stage 3: Processes the 2nd layer

– Stage 4: Consists of the fully connected 
network to get the predicted outputs of the 
CNN

Elapsed Time

Avg. Time: 16.67s



All times 

Implementations Elapsed times(s)

Sequential 35.5

Parallel for 15.55

Parallel reduce 19.17

Parallel pipeline(3-stage) 16.11

Parallel pipeline(4-stage) 16.7



Further Improvements 
• In the parallel for implementation 

this code here takes place after the 
convolutional layers and FCN are 
finished,

• variable correct_predictions is being 
updated in the parallel loop

• This causes a potential race condition 
because multiple threads could try to 
update the thread concurrently

• To avoid potential race condition, use 
atomic operations

softmax(z3i,z3i,10); 
int local_correct_predictions = 0;

int predicted_class = argmax(z3i,10); 

if(predicted_class == expected_outputs[m]){
local_correct_predictions++;

}
//printf("Image %d: Predicted Class = %d, 

Expected Class = 
%d\n",m,predicted_class,expected_outputs[m]);

free(tempinput);free(pooledOutput); free(FCNi);free(z); 
free(z2i); free(z3i);

correct_predictions += local_correct_predictions; 
});


	Slide 1: Convolutional Neural Network with Intel Thread Building Blocks
	Slide 2: What is a CNN
	Slide 3: Training Set Data
	Slide 4: Convolutional Layers
	Slide 5
	Slide 6: Fully Connected Network
	Slide 7: Classified Outputs
	Slide 8: Initial Computation time/Accuracy
	Slide 9: Opportunities for Parallelization
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: All times 
	Slide 15: Further Improvements 

