.Convolutional Neural Network with Intel
Thread Building Blocks

By Jqshua Duncan & Matthew Irvine

What is a CNN

® CNNs are a class of deep learning
neural networks, predominately
used for processing data with a
grid-like structure
e Applications
O Image Recognition
O Image Classification
* - O “Object Detection
e Key Components
o Training set
o Convolutional Layers
o .. Fully:‘connected network

(2: feature maps
16@11x11 16@5%5
(1: feature maps
6@26x26

Convolutions

Pooling Convolutions

Layer 1

0 120 M 10 dass

(-0

|
\

ﬁully Covnnectevd
Network

Training Set Data

e Stored in multiple .bif files
e 10,000 28x28 Images
e 7.84 Million Elements

e _,Imgges are of handwritten
e St ;nurﬁbe\r dlglts

-.f —-5‘

2 0 CorréSp 1ds to the expected number

Convolutional Layers

First Layer

® Grabs first 28x28 image that is stored in a
.bif file(binary input file)
O Thisis the input map
® Contains 6 feature maps
® Each feature map has a distinct 3x3 kernel
to extract certain features from the image
® 6 Narrow 2D convolutions will be done,
creating 6 26x26 feature maps
® Bias and Rectified Linear Unit(ReLu) are
" applied.to each pixel
- | @.~ Max poolingis applied to only retain
important features, outputting the result:
13x13 3

»Note 1: The Rel'u function converts any negative input (x) to zero to introduce
* nodlinearity so the network can learn complex patterns
Note 2: Bias ensures that if a feature is absent, a given neuron can still be active

Second Layer

Takes the 6 pooled outputs from first layer
O These are the input maps

16 feature maps

96 kernels(6 for each feature map)

Convolution will be done to the 6 input

maps with their distinct kernels

Once each input map is convoluted, they

are summed together creating one feature

map

Bias and ReLu are then applied to each

pixel .

Lastly max pooling is applied result: 5x5

Note 3: The convolution descibed is cross convolution since CNNs do not flip the

kernels

(2: feature maps 0 120 84 10 dass
16@11x11 16@5x5

——

C1: feature maps
6@26x26 6@13x13

Fully Connecte;j
Network

Fully Connected Network

e Fully Connected Network Consists of 3
layers

O 1st layer interprets the features
extracted by the convolutional layers

o 2nd layer narrows down the most
important features

o 3rd layer serves as the decision making
component giving us 10 classified
outputs '

10 dass

*Each of these layers have distinct weights and
biases |

Classified Outputs

e The FCN outputs a vector containing
10 elements, each corresponding to a
class label from 0-9
® These elements report the networks
confidence scores for each of the 10
possible classes
- ® The class with the highest confidence
" Y ~g,c’cjti‘fe-,igg considered the predicted
~ - _class by the FCN

AOE eceds00@atom: ~/4772

end: 296379 us

Elapsed time for Parallel For: 4915 us

ece4900@aton:~/47725 make all

g++ -03 -Wall -std=c++11 -0 imgconv imgconv.cpp imgconv_fun.o dataReading.o -In
-1tbb

ece4900@aton: ~/47725 . [imgcony

(read_binfile) Size of each element: 1 bytes

(read binfile) Input binary file: # of elements read = 7840000

0.019937

-0.002645

-0.004536

-0.026347

. 11-0.035169

-0.020069

-0.0065600

0.009695

Image 0: Predicted Class = 3, Expected Class = 3

end: 963077 us
Elapsed time for Parallel For: 5617 us
ece4900gaton:~/47725 ||

Fie - Accuracy was compared to matlab

I I l . . I C .
[]
| I m e ((| | ' l (@atom: ~/Documents, /Project? M =)
= -std=c++11 -o imgconv imgconv.cpp imgconv_fun.o dataReading.o -lm -ltbb

read_bi Size of each element; 1 bytes
re i ile: =
acc 97%
sta

 The CNN’s accuracy was confirmed to
be 96.97% meaning 9697/10000
datasets were accurately guessed by
the CNN

implémentation of CNN

- The elg'bsed time was found to be
N 35.6_seconds on average

Opportunities for
Parallelization

Y Parallel_For

* Since we are dealing with a large dataset
with 28x28*10,0000 elements, parallel_for

2ce4900@atom: ~/Documents/Project3s . /imgconv
read_binfile) Size of each element: 1 bytes

prevents the linear increase in computation read_binfile) Input binary file: # of elements read = 7840000
time accuracy: 96.97%
| start: 655989 us
e Parallel_for wguld also be beneficial in the T:;s:gsmeu;nr Parallel_For: 15829848 us
~ second layer, since 16 feature maps need to ce4900@atom: ~/Documents/Project3$. /imgconv
: ,-’-behroduced “(read_binfile) Size of each element: 1 bytes
i _:.’ j‘;-;:“ read binfile) Input binary file: # of elements read = 7840000
% o IR ég - laccuracy: 96.97%
. é_}qease cuttlng computation time in tart: 514646 Us
G, \ and: 44253 us
TN - 7.',: lapsed time for Parallel For: 15529607 us

= Could thedrét.t«;ally use parallel for in the 2d
convolutldn 5aI0:uIat|on itself but the input
. fmages and kernels are far too small to see any

beneﬁf

Parallel_Reduce

Implemented with parallel_for

Used to sum convolutions in the
second layer

Each convolutionis 11x11 or 121
elements

There are 6 convolutions total for
each parallel_reduce call

Early implementations were slower

*..because not enough elements were

added

Elapsed Time

OO @ eced900@atom: ~/4772

ece4900@atom:~$ cd 4772/

ece4900@atom:~/47725 . [/imgconv

(read_binfile) Size of each element: 1 bytes

(read_binfile) Input binary file: # of elements read = 7840000
accuracy: 96.97%

start: 49206 us

end: 875643 us

Elapsed time (only second layer convolution computation): 19826437 us
ece4900@atom:~/47725 I

Avg. Time: 19.17s

(3-stage) Parallel_Pipeline

. In the pipélined implementation 3 stages were used

& A" R . J
— Stage 1 — Image loading: Continuously loads
images sequentially.feeding them into the

pipeline without waiting, allowing for a eceasangaton:~/Docunents,Projectss nake all
g++ -03 -Wall -std=c++11 -o imgconv imgconv.cpp imgconv_fun.o dataReading.o -1m -1tbb
Constant Str‘eam of data » lece4900@atom:~/Documents /Project6$./imgconv

(read_binfile) Size of each element: 1 bytes

(read_binfile) Input binary file: # of elements read = 7840000
accuracy: 96.97%

start: 761433 us

end: 874473 us

- stage 2: - Convolutional Processing: This stage Elapsed time For 3-stage Parallel_Pipeline: 16113040 us

lece4900@atom:~/Documents /Project6$ I

applies the first and second convolutional

3
\Iayers in paraIIeI and processes multlple

P -3" FCN stage: This stage opqrates in
L .-~g‘ar’éﬂel_t,o compute the final outputs

- .
S M Tl
Por
M S T
- »
« ¥ ..' - g
v [i 2
: 4 2
b “h
- l‘ -

(4-stage) Parallel_Pipeline

. In this pipelined implementation 4 stages were
used '

— Stage 1: Image loading: Continuously loads
images sequentially feeding them into the
pipeline without waiting allowing for a : :
Constant Stream Of data g++ -03 -Wall -std=c++11 -o imgconv imgconv.cpp imgconv_fun.o dataReading.o -1m

ece4900@atom:~/Documents/Project5$./imgconv
(read_binfile) Size of each element: 1 bytes
(read_binfile) Input binary file: # of tlements read = 7840000
accuracy: 96.97%
st start: 714494 us
T . end: 386009 us
- Stage 2' Processes the 1 |ayer to eXtraCt the lapsed time For 4-stage Parallel Pipeline: 16671515 us
- ece4900@atom:~/Documents/Project5s$

Implementations Elapsed times(s)
Sequential
Parallel for

Parallel reduce

Parallel pipeline(3-stage)

k Parallel pipeline(4-stage)

All times

Further Improvements

In the parallel for implementation

this code here takes place after the

convolutional layers and FCN are

finished,

~variable correct_predictions is being
‘upd-ated in the parallel loop

This causes a potential race condition

because multiple threads could try to

update the thread concurrently

To avoid potential race condition, use
atomic eperations

softmax(z3i,z31,10);
int local_correct_predictions = 9;

int predicted_class = argmax(z3i,10);

if(predicted_class == ‘expected_outputs[m]){
local_correct_predictions++;

}

//printf("Image %d: Predicted Class = %d,

Expected Class =
%d\n",m,predicted_class,expected_outputs[m]);

free(tempinput);free(pooledOutput); free(FCNi);free(z);
free(z2i); free(z3i);
correct_predictions += local_correct_predictions;

1)

	Slide 1: Convolutional Neural Network with Intel Thread Building Blocks
	Slide 2: What is a CNN
	Slide 3: Training Set Data
	Slide 4: Convolutional Layers
	Slide 5
	Slide 6: Fully Connected Network
	Slide 7: Classified Outputs
	Slide 8: Initial Computation time/Accuracy
	Slide 9: Opportunities for Parallelization
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: All times
	Slide 15: Further Improvements

