
Convolutional Neural Network w/ Intel Thread Building Blocks
ECE 5772/4772

List of Authors (Joshua Duncan, Matthew Irvine)
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: joshuaduncan@oakland.edu, Matthewirvine@oakland.edu

Abstract— The Focus of this project is to enhance a
convolutional neural network (CNN) using intel’s thread
building block library (TBB) to improve processing efficiency.
The integration of TBB into CNN architectures can achieve
dynamic task scheduling and better utilization of multi-core
processors. All in all, TBB integration in CNNs offers
significant advancements in neural network speed and
efficiency, suggesting potential applications in broader neural
network models and encouraging further development of
adaptive algorithms for multi-core machine learning
environments.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have emerged
as a cornerstone in the field of machine learning, offering
robust solutions in diverse applications ranging from
handwriting recognition to medical diagnoses and
autonomous vehicle navigation. This project delves into the
integration of CNNs with thread building blocks (TBB),
aiming to harness their power for more efficient parallel
processing in handling complex and large datasets. The
motivation behind this project stems from the growing need
for faster and more efficient computational capabilities in
neural networks. As CNNs become increasingly complex
and are tasked with processing vast amounts of data, the
demand for reducing computation time without
compromising accuracy has become paramount. This is
where TBB comes into play. By facilitating dynamic task
scheduling and optimized utilization of multi-core
processors, TBB promises to significantly enhance the
computational performance of CNNs.

This will cover the implementation of a CNN using the
MNIST database, which consists of 10,000 training
samples. The designed CNN aims to precisely interpret
processed images, informing the user of the network's
accuracy in recognizing the input. A critical aspect of this
study is to compare the computation times of the traditional
sequential CNN implementation with the TBB-enhanced
version. This comparison is vital in demonstrating the
effectiveness of TBB in improving the efficiency of neural
networks.

From an educational perspective, this project
encapsulates key concepts learned in class, such as 2D
image convolution, artificial neural networks, and the usage
of TBB to speed up CPU intensive programs. Additionally,
it allowed for self-directed learning, particularly in the realm
of parallel computing and the practical application of TBB
in neural networks. The ensuing report is structured as an
expansion of these introductory themes, delving deeper into
the technicalities of CNNs, the role and implementation of
TBB, and the comparative analysis of the different
implementations.

II. METHODOLOGY

A. Convolutional Layers

The foundation of the described Convolutional Neural
Network (CNN) architecture begins with the meticulous
processing of the 28x28 pixel images from the MNIST
database, which contains a substantial set of 10,000 images
of handwritten digits. These images are stored in a binary
input file (bif) format, serving as the primary input map for
the first layer of the network. It is at this stage that the CNN
commences its critical task of feature extraction from the
basic pixel data presented by each image.

Within this layer, six unique feature maps are employed,
each associated with a dedicated 3x3 convolutional kernel.
These kernels are carefully designed to capture specific
attributes from the input images through narrow 2D
convolutions. The application of these kernels transforms
the original 28x28 input into six new 26x26 feature maps,
effectively highlighting various aspects of the input data that
are essential for pattern recognition.

Subsequently, a bias term is introduced to each of these
feature maps, followed by the application of the Rectified
Linear Unit (ReLU) activation function to every pixel
within them. The ReLU activation is a critical component in
the architecture, as it introduces the necessary nonlinearity
to the model by setting all negative inputs to zero. This
nonlinearity is what enables the network to interpret and
learn the complex patterns inherent in the varied and
nuanced shapes of handwritten digits.

mailto:joshuaduncan@oakland.edu
mailto:Matthewirvine@oakland.edu


The process culminates with a max pooling operation,
which selectively condenses the feature maps down to a
13x13 resolution. By retaining only the paramount features,
max pooling not only simplifies the information within the
feature maps, but also ensures that the resulting output
captures the essence of the input image. This step is
instrumental in reducing the dimensionality of the data,
thereby streamlining the network for the subsequent layers,
which are tasked with extracting increasingly abstract
features. The integration of the bias term across this process
is of particular importance, as it guarantees the activation of
neurons even in instances where certain features may not be
present, thus providing the network with adaptability and
enhanced generalization capabilities.

Figure 1. First Layer Architecture

Building upon the first layer of the CNN, the second
layer further refines the feature extraction process. It takes
the six input maps – which are the outputs from the first
layer – and expands the network's depth by generating 16
feature maps. This increase in depth is achieved through the
use of an intricate array of kernels; specifically, each of the
16 feature maps is produced by convolving the six input
maps with a corresponding set of six 3x3 kernels. This
means a total of 96 distinct kernels are utilized at this stage,
each contributing to the extraction of intricate features,
resulting in feature maps of size 11x11.

Once the convolution process is complete, the
information from each input map is amalgamated, summing
the convolutions to form a single comprehensive feature
map. This summing process is key to integrating the various
detected features into a unified representation. Following
convolution, each pixel within these feature maps is
processed by adding a bias term and then passed through a
Rectified Linear Unit (ReLU) activation function. This step
is crucial for introducing nonlinearity to the network,
enabling the model to learn complex patterns and
dependencies in the data.

The final step in the second layer is the application of
max pooling, which aggressively downsamples each feature
map to a size of 5x5. This operation retains only the most

prominent features from the preceding convolutions, thereby
reducing the dimensionality and computational complexity
of the network. It also provides the added benefit of making
the network's learned features invariant to minor
translations, aiding in the robustness of pattern recognition.

This second layer is pivotal in the CNN architecture, as
it builds on the primary features extracted in the initial layer
and begins to form more abstract representations of the
input data that are crucial for the network's ability to
perform complex image recognition tasks.

Figure 2. Second Layer Architecture

B. Fully connected network
The fully connected network in the described

Convolutional Neural Network (CNN) architecture consists
of three layers, each playing a pivotal role in pattern
classification. The first layer of this network is a dense layer
that interfaces with the feature maps produced by the
preceding convolutional and pooling layers. It has 400
inputs, which correspond to the flattened output of the
previous layer, and it provides 120 outputs. This layer is
responsible for interpreting the features extracted by the
convolutional layers and beginning to synthesize this
information to identify more complex patterns.

Transitioning to the second layer of the fully connected
network, it receives the 120 outputs from the first layer as
its inputs and provides 84 outputs. The significant reduction
in dimensionality from the first to the second layer reflects a
further consolidation of information, as the network focuses
on the most salient features that are critical for
classification.

The third and final layer of the fully connected network
serves as the decision-making component of the CNN. This
layer takes the 84 inputs from the second layer and narrows
them down to 10 outputs. These outputs typically
correspond to the class scores for a classification task,
which, in the case of the MNIST dataset, represent the ten
possible digits (0 through 9) that the network is attempting
to recognize.



Figure 3. Fully Connected Network Architecture

Each layer within this fully connected network possesses
its own set of distinct weights and biases. These parameters
are learned during the training process and are essential for
the network’s ability to make accurate predictions. Weights
determine the influence of each input value on the output,
and biases allow the network to adjust the output
independently of the weighted sum. The training process
involves adjusting these weights and biases to minimize the
difference between the network's predictions and the actual
target values.

The architecture of the fully connected network is
critical as it serves to interpret the high-level features
extracted by the convolutional layers and translate them into
a final prediction. The progression from a high number of
inputs in the first layer to a small number of outputs in the
last layer reflects the network's process of abstracting raw
image data into an understandable classification.

Figure 4. Fully Connected Neural Network Concept

III. EXPERIMENTAL SETUP
In this project setup, the Intel Atom N2600 board was

utilized, chosen for its computational capability suitable for
running the Convolutional Neural Network (CNN). This
board, running Ubuntu Linux, provided a stable and
efficient platform for executing the C++ code that forms the
backbone of theCNN.

A validation process was structured to include an
extensive testing phase, where the CNN's predictions were
compared against a predefined dataset containing the
expected results. This dataset served as the ground truth for
the MNIST images the CNN was tasked to classify.

Accuracy measurements were taken across 10,000 iterations
to ensure statistical significance and reliability of the
performance metrics.

IV. Opportunities for parallelization

There are multiple opportunities for parallelization when
using intel’s TBB library. This project constructed 5
different implementations of the CNN – one of which is the
basic implementation discussed earlier in order to gauge
how well the CNN would perform when using different
parallel techniques.

A. Parallel_for

In addressing the computational challenges of processing
a large dataset, particularly one consisting of 28x28 pixel
images across 10,000 examples, the implementation of
parallel computing techniques is essential. The parallel_for
construct plays a pivotal role in this context, effectively
preventing the linear increase in computation time
characteristic of sequential processing.

The benefits of parallel_for are especially evident in the
second layer of our Convolutional Neural Network (CNN),
where the generation of 16 feature maps imposes a
substantial computational burden. By employing
parallelism, one can distribute this workload across multiple
cores, thereby significantly accelerating the processing
speed. This approach is scalable; as the number of feature
maps increases, 'parallel for' can seamlessly handle the
intensified workload without necessitating major changes to
the codebase.

B. Parallel_reduce

Another function used is the parallel_reduce function. As
stated previously, during the second convolutional layer,
there is a point at which multiple convolutions will need to
to be performed and then summed. This is where the
Parallel_Reduce function can be taken advantage of. The
purpose of this function is to optimize associative functions
such as taking the sum, average, maximum, or performing
Boolean Operations.

C. Parallel_pipeline

The next implementation that was investigated was
parallel pipelining. The parallel_pipeline architecture that
was implemented was divided into three distinct stages,
each designed to process different components of the CNN
in a concurrent manner.

The first stage is pivotal, ensuring a steady stream of
image data is available, feeding subsequent stages without
delay from the processing of previous images. This



continuity is crucial, as it eliminates idle time, optimizing
the pipeline's operational flow.

Subsequent to image loading, the convolutional layers
come into play during the second stage. Here parallelization
is leveraged to expedite the workflow, allowing for the
simultaneous processing of multiple images, thereby
extracting primary features with increased efficiency.

The final stage of this pipeline is the fully connected
network stage, which synthesizes the high-level features
delineated by the convolutional layers to formulate the final
prediction.

In an effort to refine the parallel pipelining approach,
the three-stage pipeline was expanded into a four-stage
construct. This iteration maintains the original pipeline's
structure but segregates the convolutional layers into two
separate stages. The modified second stage now singularly
manages the first convolutional layer, aiming for a more
balanced computational distribution and augmented
parallelism.

V. Results

A. Accuracy measurement

The expected result of this thorough testing regimen
was to ascertain a 96.97% accuracy in the CNN's
predictions, proving the model's effectiveness in image
recognition tasks. The accuracy metric would be a reflection
of the CNN's ability to generalize from the training data and
correctly classify new, unseen images.

B. Sequential Implementation

The first implementation of the CNN model recorded a
processing time of 35.5 seconds. This metric is significant
as it provides a baseline for the computational demand of
the network, particularly highlighting the second layer's
intensive calculations.

The second layer, due to its convolutional operations
involving multiple feature maps and kernels, is inherently
the most computationally intensive part of the CNN. This
layer's performance is a critical factor in the overall
execution time, as it engages in a high volume of matrix
multiplications and nonlinear activation functions, which are
resource-demanding processes. In total for each of the
10,000 images, the program creates 16 feature maps. These
maps come from multiplying each of the 6 original images
by kernels, and then summing up the result. So suffice it to
say, there is a great deal of computing in the second layer.

Therefore, the time of 35.5 seconds is reflective of the
computational workload required by the second layer to
perform feature extraction and transformation across the
entire dataset. This understanding is essential for identifying
potential optimization opportunities in subsequent
implementations of the network.

Figure 5. Sequential

C. Parallel_For implementation

Through the application of parallel processing, a
2.28-fold increase in speed was achieved, effectively cutting
the computation time in half compared to a sequential
approach. This improvement underscores the effectiveness
of parallelism in enhancing the performance of CNNs,
particularly when dealing with large datasets where the
demand for computational resources is high.

Figure 6. Parallel_For

D. Parallel_Reduce implementation

The parallel_reduce function was used to assist with the
summation of the six different matrices. For all sixteen
maps, six different convolutions on an image, then after all
of these are summed, the data is sent to the reduction class
and summed. The result of this implementation is a time of
19.17 seconds which is a significant increase over the
sequential. That being said, this implementation is also built
off of the parallel_for implementation, meaning that by
adding the parallel_reduce, the program actually slows
down by almost 4 seconds. There is room for improvement
here however. One way would be to remove the parallel_for
from the second layer being removed. This in theory should
cause a small increase in speed. More elements could also
be sent to the parallel_reduce class at the same time,
meaning that the overall time needed for parallel_reduce
would be decreased as it would have to be used less. The
images being sent are only 11x11 pixels in size, so many of
them are needed to make parallel_reduce worth using.



Figure 7. Parallel_Reduce

E. Parallel_Pipeline implementations

In the previous parallel implementations, impressive
speed up was achieved relative to the sequential CNN.
However, when the computation times were assessed, the
results were intriguing. The three-stage pipeline showed a
marginal slowdown, approximately one second longer than
the parallel_for implementation. The four-stage pipeline
extended this delay slightly further. These increases in
computation time are likely due to the overhead that
multi-stage pipelines introduce. Each additional stage brings
synchronization points and data transfers that, despite the
benefits of concurrent processing, introduce latency.

Despite these findings, the structured nature of the
parallel pipeline holds promise for scalability. It provides a
better framework that has the potential to surpass the flat
parallel_for architecture, particularly as the complexity and
volume of processing tasks escalate. This exploratory study
emphasizes the nuanced balance between theoretical and
empirical performance in parallel computing architectures.

Figure 9. 3-stage Parallel_Pipeline

Figure 10. 4-stage Parallel_Pipeline

CONCLUSIONS

Convolutional Neural networks are powerful tools for
deep learning applications. Input data is able to be processed
with a variety of filters to parse defining features. They are
then able to use those key features to determine the optimal
choice depending on the input. Their modular structure
allows them to be used in a variety of applications such as
image processing, but can also be applied in other situations
where the data is in a grid-like structure.

Despite their usefulness, these systems come at an
intense cost which lies in the processing power needed in
order to perform these calculations. This is where parallel
processing could be used to speed up the computation.
Parallel processing can be applied to many places in a CNN.
Being that the convolutional layers need to process a large
amount of data, these will be the most beneficial to
parallelize.

During this project, it was found that a significant
amount of time can be saved with parallel processing.
Different methods can be used to do this. The parallel_for
function of intel TBB was found to be the most efficient in
this case. It was applied over top of both of the first two
convolutional layers which allowed for a massive increase
in speed. The other functions tried were parallel_reduce and
parallel_pipeline. While less effective than the parallel_for
implementation, these still resulted in a large increase in
speed over performing the calculations sequentially.

REFERENCES

[1] D. Llamocca, Reconfigurable Computing Research
Laboratory. [Online]. Available:
http//www.secs.oakland.edu/~llamocca/index.html.
[Accessed: 1-Nov-2023].

[2] R. Gonzalez, Deep Convolutional Neural Networks. [Online].
Available: https://ieeexplore.ieee.org/document/8496892
[Accesed: 15-Nov-2023]


