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Abstract—This paper describes the design and implementation 

into incorporating a multi-core application for binary large object 

(BLOB) analysis in an embedded environment. The methodology 

uses parallelization on discrete function level, as well as pipelining 

the entire image calculation process. This paper presents a method 

into extracting image BLOB data it’s optimal parallelization 

strategies. 

I. INTRODUCTION 

Unlike thermocouples, which measure a single 
temperature with a slow transient response, thermal imaging 
allows for measuring thousands of temperature readings 
across an image plane simultaneously. To extract measurable 
data from thermal video, BLOB tracking may be 
implemented to isolate temperature readings of an object 
from background noise. Further image processing can be 
used to extract average temperature and centroid location. 

 The long processing time associated with these image 
convolutions results in thermal imaging not being directly 
applicable for stimulus in an embedded real-time system. 
This paper explores the implementation of various 
multithreading methods through the oneAPI Threading 
Building Blocks (TBB) to reduce the computation time of 
BLOB tracking and image convolutions within the frame 
time of the source video. The software will extract BLOB 
centroid and average temperature values. 

II. METHODOLOGY 

In the software’s execution, there are three main 
processes: loading data, frame calculation, and output data 
saving. 

A. Loading Data 

The software allows for three input file types: *.jpg, *.bin 
(binary file), and *.mov video files. Processing these file 
formats are supported by the FFmpeg libraries [1] and stb 
libraries [2]. These libraries are installed using a package 
manager and linked to the project through CMake. The 
image and binary file inputs permit single frame and batch 
image processing.  

During batch processing and parallel pipelining, loading 
the images was included in the processing times recorded. 
The same image loading function was used in sequential and 
parallel pipeline batch loading in a sequential format to make 
the timing data comparable. 

B. Frame Processing 

The first step of processing the frame is to translate the 
frame to grayscale if needed. This is done using ITU-R 
BT.601 recommendation luma constants [3]. For the most 
accurate measurements, the image frames should be recorded 
into single channel grayscale. 

The image is then copied into a Boolean image under a 
masing operation. Any pixels from the translated grayscale 
image whose pixels are above a temperature threshold set by 
the user correlate to setting the Boolean pixels true. This 
masks the background of the images from being used in 
future functions. To parallelize masking, TBB parallel_for 
was implemented subdivide the image into chunks that are 
given to other threads to process. 

 

 
Fig 1. Image masking 

 
The Boolean image is then processed by the recursive 

grass fire algorithm for image BLOB recognition [4]. The 
following connectivity kernel is in the grass fire algorithm: 

 

 
Fig 2. Recursive Grass Fire contact kernel 

 
The center of the kernel is placed at the first pixel of the 

boolean image that is true. The algorithm then loops through 
the contact kernel. When a boolean pixel value of “true” 
overlaps with a kernel value “true”, the pixel on the boolean 
mask is burned (set to false). That pixel is then assigned the 
current BLOB id in a mapping image. The algorithm is then 
re-ran recursively with the kernel recentered on the pixel just 



burnt. After recursion ceases, the BLOB id is incremented 
and the algorithm is repeated until all pixels in the mask 
image are set to false.  
 

 
Fig 3. Recursive Grass Fire transformation 

 
An attempt to parallelize the algorithm was done using 

TBB task groups. This implementation suffered from issues 
in software concurrency and ultimately was slower than the 
sequential implementation.  

Next, the software processes the map and grayscale 
image into a BLOB average function. This function iterates 
through BLOB IDs, finds the pixels in the image map with 
the corresponding ID, and grabs the value of the 
coresponding pixel in the grayscale image. The values are 
added and the summation is divided by the number of pixels 
in the BLOB to find the average grayscale pixel value of the 
BLOB. 

To parallelize this function, two methods were tested. 
The first method used TBB parallel_for to split BLOB IDs 
into separate threads. This implementation has the best 
performance when an image contains many BLOBS. The 
second approach was to use TBB parallel_for to split BLOB 
IDs into separate threads, and then use TBB parallel_reduce 
to calculate the average per BLOB. 

The software then takes the BLOB map image and 
processes it through the centroid function. This function 
finds the centroids of the BLOBs by averaging the X and Y 
values of every pixel assigned to each BLOB. The 
parallelization stratigy used was similar to the BLOB 
average value function. The first method used TBB 
parallel_for to split BLOB IDs into separate threads. Each 
thread is then processed the average X and Y value for it’s 
BLOB ID. The second approach was to use TBB parallel_for 
to split BLOB IDs into separate threads, and then use TBB 
parallel_reduce to calulate the average X and Y per BLOB. 

The frame processing algorithm is further multithreaded 
by running each frame in a TBB Parallel Pipeline. This 
creates individual threads for each image and allows 
parallelization for some of the functions which couldn’t be 
paralyzed internally. 

 

Fig 4. Program parallel pipeline flow 

III. EXPERIMENTAL SETUP 

To measure the multithreading time savings, a 
benchmark function was added to the program. This function 
generated 100 white images with a resolution ranging from 

76x43 to 7680x4320 pixels. The function would then record 
the compute time for every step in the pipeline sequential 
and parallel. By making the images entirely white, any 
variations in the output timing are from pixel count and not 
BLOB count. 

The software was also implemented with a compare 
option. When enabling the compare function, the software 
would compute using sequential and parallelization to 
compare the results. This could be used for examining the 
time savings during single image and batch processing. 

IV. RESULTS 

In parallelizing the masking function, up to 50%-time 
savings was witnessed on a four core I5-7600 for images 
ranging in size from 1232x688 to 7392x4128 pixels. 
However, when the function was run on an Intel Atom 
N2600, the parallel function had the exact same processing 
time as the sequential. This could be the result of the process 
scheduler on the Atom scheduling the parallel tasks on the 
same core as the parent task.  

The parallel recursive grass fire function was slower than 
the sequential and worsened as the number of pixels in 
BLOBs increased. This function was then excluded from the 
parallel pipeline. The BLOB average and centroid functions 
were both found to be fastest using the TBB parallel_for 
only method. The parallel_for and reduce method can be 
faster if a high number of BLOBs are found in the images. 

Finally, using a series of 500 576x343 images, the 
parallel pipeline was found to be 50% faster than the 
sequential batch method. Most of the time savings are the 
result of the individual parallelization of each function. 
Increasing the batch quantity from five images to 100 images 
did not show a dramatic increase in performance for the 
parallel pipeline as seen in Fig 5. 

 

 
Fig 5. Pipeline batch size comparison 

 
The parallel pipeline reduced the computation time a 

further 50% when moving from two cores to four cores on 
the Intel Atom N2600. To find the limits of optimization 
from parallelization, the program was moved onto an AMD 
1700X 16 threaded processor. In testing 500 576x343 
images, the limit of optimization was found to settle at 20ms 
per frame.  

 



 
Fig 6. Sequential vs. Parallel Pipeline 

CONCLUSIONS 

The recursive grass fire algorithm is not sufficient in the 
manner that it was implemented. Faster processing could be 
done by first performing closing and opening filters and then 
using a smaller contact kernel. Ultimately, there are more 
parallelization strategies that could be tested, and 

optimizations to be discovered. To reduce the processing 
time below the frame time of a video source, parallelization 
is clearly a requirement. Threaded Building Blocks appear to 
be the best method to incorporate parallelization as it usually 
simplifies issues with software concurrency and simplifies 
the multi-threading strategy.  
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