
Multi Threaded BLOB Analysis for Video Processing

Matthew Hait

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: mhait@oakland.edu

Abstract—This paper describes the design and implementation

into incorporating a multi-core application for binary large object

(BLOB) analysis in an embedded environment. The methodology

uses parallelization on discrete function level, as well as pipelining

the entire image calculation process. This paper presents a method

into extracting image BLOB data it’s optimal parallelization

strategies.

I. INTRODUCTION

Unlike thermocouples, which measure a single
temperature with a slow transient response, thermal imaging
allows for measuring thousands of temperature readings
across an image plane simultaneously. To extract measurable
data from thermal video, BLOB tracking may be
implemented to isolate temperature readings of an object
from background noise. Further image processing can be
used to extract average temperature and centroid location.

 The long processing time associated with these image
convolutions results in thermal imaging not being directly
applicable for stimulus in an embedded real-time system.
This paper explores the implementation of various
multithreading methods through the oneAPI Threading
Building Blocks (TBB) to reduce the computation time of
BLOB tracking and image convolutions within the frame
time of the source video. The software will extract BLOB
centroid and average temperature values.

II. METHODOLOGY

In the software’s execution, there are three main
processes: loading data, frame calculation, and output data
saving.

A. Loading Data

The software allows for three input file types: *.jpg, *.bin
(binary file), and *.mov video files. Processing these file
formats are supported by the FFmpeg libraries [1] and stb
libraries [2]. These libraries are installed using a package
manager and linked to the project through CMake. The
image and binary file inputs permit single frame and batch
image processing.

During batch processing and parallel pipelining, loading
the images was included in the processing times recorded.
The same image loading function was used in sequential and
parallel pipeline batch loading in a sequential format to make
the timing data comparable.

B. Frame Processing

The first step of processing the frame is to translate the
frame to grayscale if needed. This is done using ITU-R
BT.601 recommendation luma constants [3]. For the most
accurate measurements, the image frames should be recorded
into single channel grayscale.

The image is then copied into a Boolean image under a
masing operation. Any pixels from the translated grayscale
image whose pixels are above a temperature threshold set by
the user correlate to setting the Boolean pixels true. This
masks the background of the images from being used in
future functions. To parallelize masking, TBB parallel_for
was implemented subdivide the image into chunks that are
given to other threads to process.

Fig 1. Image masking

The Boolean image is then processed by the recursive

grass fire algorithm for image BLOB recognition [4]. The
following connectivity kernel is in the grass fire algorithm:

Fig 2. Recursive Grass Fire contact kernel

The center of the kernel is placed at the first pixel of the

boolean image that is true. The algorithm then loops through
the contact kernel. When a boolean pixel value of “true”
overlaps with a kernel value “true”, the pixel on the boolean
mask is burned (set to false). That pixel is then assigned the
current BLOB id in a mapping image. The algorithm is then
re-ran recursively with the kernel recentered on the pixel just

burnt. After recursion ceases, the BLOB id is incremented
and the algorithm is repeated until all pixels in the mask
image are set to false.

Fig 3. Recursive Grass Fire transformation

An attempt to parallelize the algorithm was done using

TBB task groups. This implementation suffered from issues
in software concurrency and ultimately was slower than the
sequential implementation.

Next, the software processes the map and grayscale
image into a BLOB average function. This function iterates
through BLOB IDs, finds the pixels in the image map with
the corresponding ID, and grabs the value of the
coresponding pixel in the grayscale image. The values are
added and the summation is divided by the number of pixels
in the BLOB to find the average grayscale pixel value of the
BLOB.

To parallelize this function, two methods were tested.
The first method used TBB parallel_for to split BLOB IDs
into separate threads. This implementation has the best
performance when an image contains many BLOBS. The
second approach was to use TBB parallel_for to split BLOB
IDs into separate threads, and then use TBB parallel_reduce
to calculate the average per BLOB.

The software then takes the BLOB map image and
processes it through the centroid function. This function
finds the centroids of the BLOBs by averaging the X and Y
values of every pixel assigned to each BLOB. The
parallelization stratigy used was similar to the BLOB
average value function. The first method used TBB
parallel_for to split BLOB IDs into separate threads. Each
thread is then processed the average X and Y value for it’s
BLOB ID. The second approach was to use TBB parallel_for
to split BLOB IDs into separate threads, and then use TBB
parallel_reduce to calulate the average X and Y per BLOB.

The frame processing algorithm is further multithreaded
by running each frame in a TBB Parallel Pipeline. This
creates individual threads for each image and allows
parallelization for some of the functions which couldn’t be
paralyzed internally.

Fig 4. Program parallel pipeline flow

III. EXPERIMENTAL SETUP

To measure the multithreading time savings, a
benchmark function was added to the program. This function
generated 100 white images with a resolution ranging from

76x43 to 7680x4320 pixels. The function would then record
the compute time for every step in the pipeline sequential
and parallel. By making the images entirely white, any
variations in the output timing are from pixel count and not
BLOB count.

The software was also implemented with a compare
option. When enabling the compare function, the software
would compute using sequential and parallelization to
compare the results. This could be used for examining the
time savings during single image and batch processing.

IV. RESULTS

In parallelizing the masking function, up to 50%-time
savings was witnessed on a four core I5-7600 for images
ranging in size from 1232x688 to 7392x4128 pixels.
However, when the function was run on an Intel Atom
N2600, the parallel function had the exact same processing
time as the sequential. This could be the result of the process
scheduler on the Atom scheduling the parallel tasks on the
same core as the parent task.

The parallel recursive grass fire function was slower than
the sequential and worsened as the number of pixels in
BLOBs increased. This function was then excluded from the
parallel pipeline. The BLOB average and centroid functions
were both found to be fastest using the TBB parallel_for
only method. The parallel_for and reduce method can be
faster if a high number of BLOBs are found in the images.

Finally, using a series of 500 576x343 images, the
parallel pipeline was found to be 50% faster than the
sequential batch method. Most of the time savings are the
result of the individual parallelization of each function.
Increasing the batch quantity from five images to 100 images
did not show a dramatic increase in performance for the
parallel pipeline as seen in Fig 5.

Fig 5. Pipeline batch size comparison

The parallel pipeline reduced the computation time a

further 50% when moving from two cores to four cores on
the Intel Atom N2600. To find the limits of optimization
from parallelization, the program was moved onto an AMD
1700X 16 threaded processor. In testing 500 576x343
images, the limit of optimization was found to settle at 20ms
per frame.

Fig 6. Sequential vs. Parallel Pipeline

CONCLUSIONS

The recursive grass fire algorithm is not sufficient in the
manner that it was implemented. Faster processing could be
done by first performing closing and opening filters and then
using a smaller contact kernel. Ultimately, there are more
parallelization strategies that could be tested, and

optimizations to be discovered. To reduce the processing
time below the frame time of a video source, parallelization
is clearly a requirement. Threaded Building Blocks appear to
be the best method to incorporate parallelization as it usually
simplifies issues with software concurrency and simplifies
the multi-threading strategy.

REFERENCES

[1] FFmpeg et al, “FFmpeg” Github. 19-Sep-2021. Available:

https://github.com/FFmpeg/FFmpeg

[2] Nothings et al, “STB,” Github. 10-Sep-2021. Available:
https://github.com/nothings/stb

[3] ITU-R, rep. Available: https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-
REC-BT.601-7-201103-I!!PDF-E.pdf

[4] T. B. Moeslund, “CH7. BLOB Analysis,” in Introduction to video
and image processing: Building real systems and applications,
London: Springer, 2012, pp. 103–107.

