
Implementing Parallel AStar Search Algorithom On A Low Power Embedded

System

List of Authors (Abdulraheem Aljarrah, Ala'aldin Hijaz, Daniel Llamocca Obregon)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: aaljarrah@oakland.edu, ahijaz@oakland.edu, llamocca@oakland.edu

A star is a search algorithm that search through a space of

possibilities for an optimal solution out of all possible solutions.

A star is typically applied to a path finding type of search

problems.

In this paper we will implement the A star algorithm using

sequential approach and parallel approach. We will examine

different parallel approaches on the algorithm.

A time comparison between the different the sequential and

parallel approaches were done, as a conclusion was that based

on the grid size and dimensions one approach may be better

than another approach.

Based on that conclusion, we recommend using a hybrid

approach where switching between the sequential and parallel

approach based on the grid parameters.

I. INTRODUCTION

A* is a search algorithm that search through a space of
possibilities for an optimal solution out of all possible
solutions. It is typically applied to a path finding type of
search problems. Starting from a specific node of a graph,
the algorithm aims to find a path to a given end node with
the smallest cost. The algorithm does that by maintaining a
tree of paths originating at the start node and extending those
paths one node at a time until it reaches the end node [1].

The algorithm extends one path at a time, and to
determine which path to extend it uses a cost function.

f(n) = g(n) + h(n)

The cost function f(n) is formatted by adding the cost
from the start node to the current node (g(n)) and an
estimation of the cheapest cost path from the current node to
the end node (h(n)). h(n) is called the heuristic function.

The heuristic function depends on the problem itself, one

key point when selecting the heuristic function is to not
overestimate the cost to get to the end node. In this paper we
will use the Manhattan distance [2] as our heuristic function.

In these days, many microcontrollers are multicores, and

to cope with the advancement in technologies and algorithms
many industries are switching to multicore embedded
systems. To really be able to get benefits of these powerful

microcontrollers you would need to make sure that your
algorithms can run on a parallel system which may be a
challenge for many different algorithms. The A* search
algorithm is widely used for many different applications [3]-
[6]. Therefore, in this paper, we are focusing on how to
implement a parallel A* search algorithm.

In this paper, we will implement the A* algorithm using

a sequential approach first, then we will implement different
parallel approaches and examine the improvement on
performance on different graph size. We will be using TBB.

In the ECE5900 class we have learnt how to parallelize a

sequential algorithm and how to examine when it’s going to
shine. We had to learn how to use the OpenGL library [7] to
be able do the graphical view. Also, this was our first time
using the A* algorithm.

II. METHODOLOGY

A. Serial Algorithm

First, we created a Sequential approach of the Algorithm,
which was our starting point. The Serial approach use this
idea of open and closed sets. The open set contain possible
nodes that are still candidates and not checked yet. The
closed set contain nodes that we have already examined.
Every loop, we examine a new node from the open set, this
node shall have the lowest f(n), we look to it’s neighbors and
update their g(n), h(n) and f(n) and add them to the open set.
The next loop, one of these neighbors will be our next
candidate node.
Pseudocode:
function reconstruct_path(cameFrom, current)

 total_path := {current}

 while current in cameFrom.Keys:

 current := cameFrom[current]

 total_path.prepend(current)

 return total_path

// A* finds a path from start to goal.

// h is the heuristic function. h(n) estimates the cost to reach goal from node

n.

function A_Star(start, goal, h)

 // The set of discovered nodes that may need to be (re-)expanded.

 // Initially, only the start node is known.

 // This is usually implemented as a min-heap or priority queue rather than a

hash-set.

 openSet := {start}

 // For node n, cameFrom[n] is the node immediately preceding it on the

cheapest path from start

 // to n currently known.

 cameFrom := an empty map

 // For node n, gScore[n] is the cost of the cheapest path from start to n

currently known.

 gScore := map with default value of Infinity

 gScore[start] := 0

 // For node n, fScore[n] := gScore[n] + h(n). fScore[n] represents our

current best guess as to

 // how short a path from start to finish can be if it goes through n.

 fScore := map with default value of Infinity

 fScore[start] := h(start)

 while openSet is not empty

 // This operation can occur in O(1) time if openSet is a min-heap or a

priority queue

 current := the node in openSet having the lowest fScore[] value

 if current = goal

 return reconstruct_path(cameFrom, current)

 openSet.Remove(current)

 for each neighbor of current

 // d(current,neighbor) is the weight of the edge from current to

neighbor

 // tentative_gScore is the distance from start to the neighbor

through current

 tentative_gScore := gScore[current] + d(current, neighbor)

 if tentative_gScore < gScore[neighbor]

 // This path to neighbor is better than any previous one. Record

it!

 cameFrom[neighbor] := current

 gScore[neighbor] := tentative_gScore

 fScore[neighbor] := gScore[neighbor] + h(neighbor)

 if neighbor not in openSet

 openSet.add(neighbor)

 // Open set is empty but goal was never reached

 return failure

Figure1, shows the A* algorithm in action, the orange

circile is the starting point, the purple is the target, the green
is a node in the open set, the red is a ndoe in the closed set
and the black is a wall that we can’t go through.

Figure 1: A*

B. Parallel approach

We have tried many different approaches for
parallelization, however, at the end, a simple parallel for lop
showed to be the most efficient and it showed a promising
result compared with the sequential approach.
Pseudocode:
function reconstruct_path(cameFrom, current)

 total_path := {current}

 while current in cameFrom.Keys:

 current := cameFrom[current]

 total_path.prepend(current)

 return total_path

// A* finds a path from start to goal.

// h is the heuristic function. h(n) estimates the cost to reach goal from node

n.

function A_Star(start, goal, h)

 // The set of discovered nodes that may need to be (re-)expanded.

 // Initially, only the start node is known.

 // This is usually implemented as a min-heap or priority queue rather than a

hash-set.

 openSet := {start}

 // For node n, cameFrom[n] is the node immediately preceding it on the

cheapest path from start

 // to n currently known.

 cameFrom := an empty map

 // For node n, gScore[n] is the cost of the cheapest path from start to n

currently known.

 gScore := map with default value of Infinity

 gScore[start] := 0

 // For node n, fScore[n] := gScore[n] + h(n). fScore[n] represents our

current best guess as to

 // how short a path from start to finish can be if it goes through n.

 fScore := map with default value of Infinity

 fScore[start] := h(start)

 while openSet is not empty

 // This operation can occur in O(1) time if openSet is a min-heap or a

priority queue

 current := the node in openSet having the lowest fScore[] value

 if current = goal

 return reconstruct_path(cameFrom, current)

 openSet.Remove(current)

 for each neighbor of current

 // d(current,neighbor) is the weight of the edge from current to

neighbor

 // tentative_gScore is the distance from start to the neighbor

through current

 tentative_gScore := gScore[current] + d(current, neighbor)

 if tentative_gScore < gScore[neighbor]

 // This path to neighbor is better than any previous one. Record

it!

 cameFrom[neighbor] := current

 gScore[neighbor] := tentative_gScore

 fScore[neighbor] := gScore[neighbor] + h(neighbor)

 if neighbor not in openSet

 openSet.add(neighbor)

 // Open set is empty but goal was never reached

 return failure

As can be noticed from the pseudo code, we have used

the same code we used for the sequential approach, but we
added a parallel for loop (Grayed out area), and to make sure
we don’t access the same memory at the same time, we
added a mutex (Red Area). This approach resulted in the
most efficient parallel approach. In the next sections we will
be discussing the experimental setup and covering the
results.

III. EXPERIMENTAL SETUP

As an experiment we have collected data using the Atom
board, it has two cores, it was provided by the class. The
other setup was a Dell XPS 15 9570 (Intel(R) Core(TM) i7-
8750H CPU @ 2.20GHz 2.21 GHz), it had 6 cores and 12
logical processors and a 32Gbytes of RAM.

On the Atom we had Ubuntu 12, on the Dell we had
Ubuntu 20.

We expect the speed up on the Dell to be much higher
compared with the Atom board. Also, we expect that the
parallel approach will shine once we start examining large
grids.

IV. RESULTS

We run both approaches (the sequential and parallel) on
both setups, captured result for different grids sizes. The
sequential approach showed better performance when the
grid size was smaller, on the other hand, the parallel
approach showed improved performance when the grid
became bigger and bigger.

During test and data collection, we found that using a
rectangular shape grid showed an improved performance
compared with using a square grid. The main reason of that
is the fact that with a rectangular shape, we get to examine
more data (wider path).

A. Atom board

The Atom board has two cores, it operates with a
600Mhz speed, Table 1 shows the result that we collected
when running the algorithm with different grid sizes.

Table 1: Atom board result

nxm TBB (Sec) Sequential (Sec)

100 x 100 0.005 0.001

200 x 100 0.026 0.015

300 x 100 0.059 0.045

400 x 100 0.107 0.075

500 x 100 0.220 0.188

600 x 100 0.248 0.236

700 x 100 1.639 2.145

800 x 100 0.321 0.302

900 x 100 1.475 1.816

1000 x 100 0.677 0.743

1100 x 100 1.630 2.057

1200 x 100 0.862 0.969

1300 x 100 13.440 21.667

1400 x 100 2.280 3.094

1500 x 100 6.965 10.523

1600 x 100 7.072 10.308

1700 x 100 1.857 2.375

1800 x 100 5.298 7.343

2100 x 100 3.079 4.058

2300 x 100 8.433 11.324

2500 x 100 11.183 15.073

2700 x 100 152.816 235.984

Computing the speed up, shows that we achieved a max
of 1.6 which does makes sense, looking the to the speed up
in Figure 2 shows that the speed up is fluctuating a little bit,
the reason behind that is the randomness of the added walls.

Figure 2: Atom SpeedUp

B. Dell XPS

We run the same experiments on the Dell XPS, and the
results are shown in Table 2.

nxm TBB (Sec) Sequential (Sec)

300 x 300 0.0022 0.0007

600 x 300 0.0019 0.0012

900 x 300 0.048 0.0368

1200 x 300 0.185 0.178

1500 x 300 0.077 0.055

1800 x 300 0.269 0.252

2100 x 300 0.298 0.275

2400 x 300 1.377 1.728

2700 x 300 5.565 8.973

3000 x 300 2.141 2.750

3300 x 300 2.618 3.730

3600 x 300 2.513 3.195

3900 x 300 42.143 82.920

4200 x 300 12.839 20.831

4500 x 300 3.219 3.903

4800 x 300 29.040 49.776

5100 x 300 2.849 2.890

5400 x 300 6.182 8.429

5700 x 300 7.238 9.606

6000 x 300 10.455 13.155

6300 x 300 37.323 60.292

6600 x 300 108.858 202.161

Computing the speed up, shows that we achieved a max
of 2 which is small knowing that we are running on 6 cores
computer, we believe that the bigger the data set the more the
speed up will improve. We also had a mutex inside the
parallel part, so this will certainly limit our speed up.

Figure 3: XPS SpeedUp

CONCLUSIONS

The A-Star algorithm is an implementation of a depth-
first search algorithm. It can be applied to numerous path-
finding algorithms and has a wide range of implementation
variants.

Implementing the algorithm with a parallel approach
allows for better execution times than serial implementation
when inputting a large set of data. The maximum speedup on
the XPS processor was ~2, while on the Atom processor it
was ~1.6. The higher speedup by the XPS processor is
mainly because the processor has more cores than the Atom
processor. However, our parallel implementation was not the
most optimized solution, further investigation in
parallelizable portions of the algorithm can result in higher
speedup rates.

Future work includes investigating more ways of parallel
execution optimization and finding more parallelizable areas
of the algorithm which can result in even higher speedup
rates.

References
[1] J. Yao, C. Lin, X. Xie, A. J. Wang and C. -C. Hung, "Path planning

for virtual human motion using improved a* star algorithm," 2010
Seventh International Conference on Information Technology: New
Generations, 2010, pp. 1154-1158, doi: 10.1109/ITNG.2010.53.

[2] M. D. Malkauthekar, "Analysis of euclidean distance and Manhattan
Distance measure in face recognition," Third International
Conference on Computational Intelligence and Information
Technology (CIIT 2013), 2013, pp. 503-507, doi:
10.1049/cp.2013.2636.

[3] I. S. AlShawi, L. Yan, W. Pan and B. Luo, "lifetime enhancement in
wireless sensor networks using fuzzy approach and a-star algorithm,"
in IEEE Sensors Journal, vol. 12, no. 10, pp. 3010-3018, Oct. 2012,
doi: 10.1109/JSEN.2012.2207950.

[4] A. Ghaffari, "An energy efficient routing protocol for wireless sensor
networks using A-star algorithm." Journal of applied research and
technology, vol. 12, no. 4, pp. 815-822, Aug. 2014.

[5] T. Chen, G. Zhang, X. Hu and J. Xiao, "Unmanned aerial vehicle
route planning method based on a star algorithm," 2018 13th IEEE
Conference on Industrial Electronics and Applications (ICIEA),
2018, pp. 1510-1514, doi: 10.1109/ICIEA.2018.8397948.

[6] Z. Boroujeni, D. Goehring, F. Ulbrich, D. Neumann and R. Rojas,
"Flexible unit A-star trajectory planning for autonomous vehicles on
structured road maps," 2017 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), 2017, pp. 7-12, doi:
10.1109/ICVES.2017.7991893.

[7] J. Rodriguez and S. Ajmal, “OpenGL API Documentation,” Online
API documentation. Available: https://docs.gl/

https://docs.gl/

	I. Introduction
	II. Methodology
	A. Serial Algorithm
	B. Parallel approach

	III. Experimental Setup
	IV. Results
	A. Atom board
	B. Dell XPS
	Conclusions

