
Matrix Multiplication: A 

Study
Kristi Stefa



Introduction

 Task is to handle matrix multiplication in an efficient way, namely for large 

sizes

 Want to measure how parallelism can be used to improve performance 

while keeping accuracy 

 Also need for improvement on “normal” multiplication algorithm

 O(n3) for conventional square matrices of n x n size



Strassen Algorithm

 Introduction of a different algorithm, one 

where work is done on submatrices

 Requirement of matrix being square and 

size n = 2k

 Uses A and B matrices to construct 7 factors 

to solve C matrix

 Complexity from 8 multiplications to 7 + 

additions: O(nlog27) or n2.80



Room for 

parallelism

 TBB:parallel_for is the perfect candidate 
for both the conventional algorithm and 
the Strassen algorithm

 Utilization in ranges of 1D and 3D to 
sweep a vector or a matrix

 TBB: parallel_reduce would be possible 
but would increase the complexity of 
usage

 Would be used in tandem with a 2D 
range for the task of multiplication



Test Setup and Use Cases

 The input images were converted to binary by Matlab and the test filter 

(“B” matrix) was generated in Matlab and on the board

 Cases were 128x128, 256x256, 512x512, 1024x1024

 Matlab filter was designed for element-wise multiplication and board code 

generated for proper matrix-wise filter

 Results were verified by Matlab and an import of the .bof file



Test setup (contd)

 Pictured to the right are the results 

for the small (128x128) case and a 

printout for the 256x256 case

 Filter degrades the image 

horizontally and successful 

implementation produces a black 

difference



Bonus case & error

 If the filter doesn’t match 

between the board and 

Matlab, the following case 

can be observed

 Half the element value are 

negative (Matlab – board), 

thus the sign dropping and 

the image appearing the 

same



Timing results (us)

Size Seq Norm Seq Strass Para 

Norm

Para 

Strass

128 37009.1 12521.7 26648.1 31785.4

256 279550 219712 212504 147237

512 15593915 4379200 2215604 1477464

1024 141.2 M 114.2 M 60116914 12895696

Seq Norm vs Para 

Strass

Speedup

128 1.16x

256 1.89x

512 10.55x

1024 10.94



Sequential Comparison

Size Seq 

Norm

Seq 

Strass

128 37009.1 12521.7

256 279550 219712

512 15593915 4379200

1024 141.2 M 114.2 M

Sequential Strass faster 

than anything else by 

2x for 128 case



Parallel Comparison

Size Para 

Norm

Para 

Strass

128 26648.1 31785.4

256 212504 147237

512 2215604 1477464

1024 60116914 12895696



Closing remarks

 Strassen provides some very significant speedup at all ranges at the cost of 

being complex 

 True Strassen requires recursion down to submatrices of size 1, becomes absurd 

at higher sizes

 Current studies find that less and less Strassen steps are needed before switching 

to an optimized “simple” multiplication method for the best performance

 Parallelism, given knowledge of TBB, is exceedingly straightforward to 

implement and provides substantial speedup on all parts of the algorithms 


