

Optimization of Matrix Multiplication

A TBB vs Sequential Approach

Kristi Stefa

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: kstefa@oakland.edu

I. INTRODUCTION

The objective of the project is to do an analysis on
matrix multiplication algorithms and see performance in
different cases between a naïve sequential implementation
and a TBB parallel implementation using whatever
functions are appropriate. Typical sequential matrix
multiplication and Strassen will be the algorithms of focus
and the first step is to develop a naïve algorithm for square
matrices of any size. The test cases will be grayscale images
processed through Matlab to create binary files and the
application will return the modified output. The results will
be compared numerically against Matlab’s native
multiplication function and visually using a recognizable
image filter as the “B” matrix in the operations. Once
validated for the test cases of different sized square images,
performance analysis can be done and recorded, and
conclusions can be made.

II. METHODOLOGY

A. Design

The analysis will revolve around 4 square images that

were selected to represent a range of element numbers.

Their specifications are listed below:

small 128x128

medium 256x256

large 512x512

very large 1024x1024

Table 1: Image properties

Through the use of a Matlab script, the images can be

converted into grayscale and formatted as a binary file for

use by the application and then reformatted based on the

application’s output as another binary file. The reformatted
output can be compared against an image created by the

Matlab script and the image difference will be displayed.

The input will be used in four ways when it gets to the

inversion application: a naïve sequential approach of the

“normal” algorithm, a parallel approach of the normal, a

sequential version of the Strassen, and a parallel version of

the Strassen that leverages the parallel normal. This allows

for efficiency comparisons between both parallel methods

and a speedup comparison between different versions of

the same algorithm. The model for the system can be seen
in the figure below

Figure 1: Project Model

B. Multiplication Algorithms

The first algorithm of focus is a normal naïve matrix

multiplication, which utilizes a sum counter and goes row

by column to compute the new value for each matrix point.

Square matrixes with dimensions N x N will have a

computation complexity O(N3) when performing this

method, implying that doubling the matrix size will require

8x the computations to achieve and so on.

An alternative method is the Strassen algorithm [1],

which begins with splitting all matrices into submatrices.

An inherent requirement is that the cases must be of size

2K.

Figure 2: Matrix subdivision

The idea of this subdivision is that the matrices can be

partitioned to break up a large multiplication into 8 smaller

ones, an action that does nothing for the computation

complexity. The main bulk of the Strassen algorithm is
how it transforms the 8 input submatrices into 7 co-factors,

as seen below

Figure 3(a): Co-factor Calculation

Figure 3(b): Output Computation

Looking at the equations listed, the multiplication

operation is considerably less straightforward and the

potential for improvement over a typical multiplication is
not immediately visible. The improvement comes in the

computational reduction from 8 sub-multiplications to 7

sub-multiplications and various additions. This reduces the

order of complexity from 3 to log27 or O(N3) vs O(N2.80).

The theory behind Strassen is that the operations are

done recursively when computing the co-factors, reducing

the needed multiplications to be 1 x 1. In practice, this full

recursion is never done for anything above size 16 because

the amount of co-factors and size needed would increase

exponentially [2]. The practical implementation, and the

one implemented here, is to divide only once and perform
the needed 7 sub-multiplications with a different algorithm

that is optimized for N/2 sized submatrices. The “normal”

algorithm is leveraged for the subs in this experiment.

C. Implementation/Parallelism

The Strassen algorithm required the development of a

custom class that could implement the submatrix
functionality required. On construction, the class would

assign pointers to the 4 “quadrants” of the linear matrix

array and allow access to functions that required it. The

class also had a method to merge 4 quadrant vectors

together to create an output linear matrix when the Strassen

operations were finished. The Strassen function utilizes

two temp arrays and seven co-factor arrays for use in

addition and for passing to the simple matrix multiplication

function. The simple multiplication function takes in two

input matrices as linear vectors and does a 3-dimensional

for loop based on the size of the vectors that are passed.

The main parallelism strategy was the use of

TBB::parallel_for over both 3D and 1D blocked ranges[3].

The normal multiplication exists as a lambda function with

a 3D blocked range from 0 to passed size. For vector wide

addition and pointer assignments, a 1D range was
leveraged with parallel_for in the Strassen matrix

construction and sub-calculations. No 2D ranges were used

because they would require a pairing with parallel_reduce,

a design pattern where the code “density” might outweigh

possible improvement over a 3D range.

III. EXPERIMENTAL SETUP

The actual application and all of its methods will be ran

on the same board while utilizing the Intel TBB library and

a Makefile. Performance time will be analyzed by the

systime header and the functionality it offers. The four time

captures will be performed in the same main() for

consistency and 10 trials will be taken for each size, barring
absurd wait times. Matlab will be utilized on a personal

computer to initialize the binary file, generate its own

matrix product off the input matrix, and construct a

difference matrix between the experimental and simulated

values.

IV. RESULTS

The timing results for all cases can be seen in the table:

Size Seq

Norm
Seq

Strass
Para

Norm
Para

Strass

128 37009.1 12521.7 26648.1 31785.4

256 279550 219712 212504 147237

512 15593915 4379200 2215604 1477464

1024 141.2 M 114.2 M 60116914 12895696

Table 2: Time results (us)

For a visual look at the data, here is a graph of

performance:

Figure 4: Graph of performance

Looking at a measure of the sequential normal vs the

results from parallel Strassen, the following speedup can

be observed:

128 1.16x

256 1.89x

512 10.55x

1024 10.94x

Table 3: Parallel Strassen Speedup vs Seq Normal

From these results, it is plain to see that parallel Strassen

is the method to use for most cases and it will continue for

larger matrix sizes. An interesting datapoint is the 128 x

128 case, where sequential Strassen held the speed

advantage by ~2x over anything else. Analysis would

conclude that Strassen is faster than normal in both

sequential and parallel and it can be shown that parallel

loses speed over sequential when sizes are small, namely

64, which is the size of the submatrices in that case.

The results also follow the theoretical computation

complexity, in that doubling the matrix size should require
8x the computations. Further analysis could be done with

double values for the B and C matrices instead of integers

to assess performance, with the caveat that results would

look like white noise if the B filter isn’t created

algorithmically for large sizes.

V. CONCLUSION

To give an overview of the objective and results, there

is merit in trying to optimize matrix multiplication using

different algorithms and methods of parallelism. The

speedup from Strassen and TBB outweighs the extra

development needed to implement them around a naïve

approach. There was a clear divide from cases that were
too small for parallelism to be effective and cases where

parallelism shined, information that’s to the benefit of

future applications and developers. A rudimentary test case

was used for the purposes of easy visualization but the

application can be expanded to more involved and

engaging filters.

VI. REFERENCES

[1] Strassen, V. Gaussian elimination is not optimal.

Numer. Math. 13, 354–356 (1969).

https://doi.org/10.1007/BF02165411
[2] Strassen Algorithm

https://en.wikipedia.org/wiki/Strassen_algorithm

[3] TBB blocked range3D, Intel,

https://www.threadingbuildingblocks.org/docs/doxygen/a

00024.html

https://doi.org/10.1007/BF02165411
https://en.wikipedia.org/wiki/Strassen_algorithm
https://www.threadingbuildingblocks.org/docs/doxygen/a00024.html
https://www.threadingbuildingblocks.org/docs/doxygen/a00024.html

