
Image Morphology 

Sullivan Lauderdale 

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

e-mail: slauderdale@oakland.edu  

 

 
Abstract—This project will be focused around the performing 

of image morphology of a grayscale image. The scope will 

include erosion, dilation, opening, closing, or boundary 

extraction. The operation will be selected by the user, and the 

operation will be performed using Thread Building blocks as 

well sequential implementation. These will both produce timed, 

and the different results will be displayed in the terminal 

window.  

I. INTRODUCTION 

This project will cover a broad range of image 
morphology operations, and it will show the varying effects 
of TBB and sequential implementation on the timing of an 
operation. The project will seek to fully display the benefits 
of using TBB for larger operations and will seek to point out 
the discrepancy between TBB and sequential 
implementation. It will also be a challenge to attempt to 
implement the multiple morphology operations to a large-
scale image in an effective manner.  

II. METHODOLOGY 

The methodology will cover the separate operations to be 
covered in the project. Figure 1 shows the full software flow. 

 
Figure 1 

 

This project also includes a universal implementation. To 
run the code, the user simply needs to name the input binary 
file “input.bif” and place it in the same folder as the code. 
Then when the user runs the code, they can type “./morpho 1 
940 602”. The morpho is used to run the code, the one 
selects the operation, and the final two numbers are the 
image dimensions.  The functional flow followed by the 
project is shown below in figure 2. 

 
Figure 2 



This figure shows the functional process that will be 
taken by the project. The numbers 1-5 indicate the operation 
specified by the user, and they will each follow a slightly 
different path. The path of the specific numbers is shown in 
figure one but was not repeated to make figure 2 more 
readable. The parallelization strategy in this project was the 
use of nested parallel for loops to perform maximum and 
minimum operations in a parallel manner. The convolution 
was also computed in parallel, and this strategy used for the 
functions was able to fully demonstrate the benefits of using 
TBB’s. 

A. Dilation 

Dilation is the first operation that will be performed in the 
project. It will include TBB and sequential implementation. 
Dilation will use a disc of radius 2 to minimize values. To 
select dilation as the morphological operation, the user will 
need to enter 1 as their operator. Dilation seeks to increase 
the boundaries and contrast displayed in the image as it 
applies the maximum values inside the matrix.  The 
parallel_for function will be used to send the matrices, and to 
determine minimum value.  It will seek grow the boundaries 
of the image where the erosion shrinks them. It uses a kernel 
like the erosion above does, and it will once again be applied 
to a binary image, and it will produce a binary output file 
that can be viewed using MATLAB or octave. [2] 
 

B. Erosion 

Erosion is applied to binary images, and it will seek to erode 

the boundaries of an image. This operation is performed 

with a kernel or structuring element that is applied to the 

binary input. The image kernel used for this case is a disc 

with a radius 2. When this kernel is applied, the maximum 

number from the kernel is applied to the center circled 

number. The erosion will be performed with the use of 

nested parallel for loops. The parallel for loops will pass the 

rows and columns of the kernel into the maximum function. 

Lastly, this maximum number will be applied into the center 

of the kernel. The image in this case should vary between 0-

255 for the morphology operation to be used. The images 

throughout the entire project will be binary input files for 

effective operations[1]. 

C. Opening 

Opening is the third morphology operation that will be 

applied within the scope of this project. It will once 

again be applied to a binary image with TBB and 

sequential implementation. Opening will see to preserve 

the pieces of an image that are like the structuring 

element. It is a similar operation to erosion, but it does 

not have as many reducing properties as the erosion 

operation. The opening operation will perform an 

erosion and dilation, but it will use the same structuring 

element for both operations to perform the operation. [3] 

Figure 2 shown below shows the flow of the opening 

operation. 

   
Figure 4 

D. Closing 

Closing is the fourth morphology that will be applied, and it 
inverse of the opening operation. Same as the opening 
operation, closing will perform dilation and erosion with the 
same kernel, but in this case the dilation is performed first 
followed by the erosion operation. This setup for opening 
and closing is why the erosion and dilatation operations will 
need to be designed and coded primarily. Once those 
operations are designed and verified, it will be possible to 
implement the opening and closing operations [4]. Figure 3 
shown below shows the program flow of the closing 
operation. 



 
Figure 5   

 

E. Boundary Extraction 

Boundary extraction will be the final and most difficult 

operation to perform. It will first involve the use of edge 

detection to determine the edges within the image. Next, 

it will involve the use of dilation to fully display the 

boundary that surrounds the selected area. The edge 

detection once again will require the use of a kernel, and 

the dilation operation will use a separate kernel and 

implement the same operation discussed in section B. 

Figure 4 shown below shoes the boundary extraction 

operation 

 
Figure 6 

 

While the dilation disc remains the same as the one used 

in all the previous operations. In this case, the kernel 

used for convolution is separate. The kernel is shown 

below in figure 6. 

 
Figure 6 

 

This kernel was hard coded into the main, and it was 

used for all image sizes. 

III. EXPERIMENTAL SETUP AND RESULTS 

 

A. Experimental Setup 

The experimental setup will be crucial in the design process 
to ensure that the experiment and program functions 
effectively. To test the project, I used MATLAB to run the 
same operations, and then compare my results. This will 
allow for the project to be tested to ensure that it was 
successful. I will also implement this experiment in stages. 
Because the erosion and dilation operations are crucial to the 
entirety of the project, I first implemented and tested these 
functions. Once these functions could run successfully, I 
could then easily move into the rest of the functions. Also, 
for ease of testing, I used the file given from original TBB 



notes section to test and display my code results. This was 
only a small portion, however, because I also was able to run 
varying image sizes for fully display the effects of using 
TBB. 

i) Dilation 
 

The first image morphology operation to be tested was 
dilation. This operation was able to be run on the DE2i-250 
board, and it could then be tested with MATLAB. The 
dilated image is shown below in the image.  

 
This image could then be measured against the 

MATLAB computation of the same operation. MATLAB 
was used to calculate the difference between the image 
generated by the Terasic board and an image generated by 
MATLAB. MATLAB has built in functions to calculate the 
dilation of an image, and this made it a reliable source to be 
measured again. When the dilation is performed 
successfully, the difference is shown as a black image. 

 
Lastly, the effects of implementing TBB is shown by the 

following table. This table shows the sequential time for 
various image sizes, followed by the TBB implementation. 

 

Size TBB Sequential 

640x480 65118.2 91901.3 

840x486 80998.6 121091.2 

940x602 108854.2 165749.9 

1080x1080 215625 351569.5 

3840x2160 1445532 2370123 

 
This table fully shows the effect of implementing TBB. 

TBB’s are able to save extensive amounts of time when 
implemented, especially as the images grown larger, and the 
operations grow more complex. Each of the values comes 
from the average of 10 test runs to ensure that the values are 
an accurate representation. The values in all the following 
table are also taken as the average of 10 runs so all the tables 
contain accurate values.  

 
ii) Erosion 

The second operation performed in the project was erosion. 
Erosion is the opposite method of dilation, and it was 

performed in the same way as dilation. To test this operation, 
the code was first run on the Terasic Board. The Terasic 
generated image is shown below.  

 
After this operation was performed on the Terasic board, it 
could then be tested through the use of MATLAB. The 
difference between the MATLAB image and the image 
generated by the board were calculated as a difference, and 
the image was black meaning there was no difference. 

 
Lastly, the time data was measured to show the benefit of 
using TBB’s. the data is shown in the below table, and the 
advantage of TBB’s is clearly known.  

 

Size TBB Sequential 

640x480 62668.7 90263.2 

840x486 79711.9 115135.4 

940x602 106837.9 161462.8 

1080x1080 215925.5 332736.7 

3840x2160 1414877 2320940 

 
iii) Opening 

 
The next operation performed was opening. 
Opening was performed by performing the erosion 
operation followed by the dilation operation. The 
opening operation as performed on the Terasic 
board is shown below.  

 
 



MATLAB also contains a function to calculate the 
opening image. Once again, the MATLAB 
generated image could be used to check against the 
Terassic board image, and it returned a black image 
reporting a successful program.  
 
 
This operation once again aligns with the desired 
result. The operation was also performed while 
being timed to shown the effects of the TBB’s 
verses the sequential implementation. This 
operation also took about double the time as the 
previous two operations which makes sense because 
it performs both erosion and dilation.  

 

Size TBB Sequential 

640x480 128707.5 174647.3 

840x486 159361 225240.2 

940x602 217368.8 316735.8 

1080x1080 447179.8 694088.8 

3840x2160 2945601 4702000 

 
 
iv) Closing 
 
The next operation performed is closing. Closing is 
performed in the opposite manner as it is dilation 
followed by erosion. The Terasic board 
implementation is shown below. 
 

 
This operation was then measured against the 
MATLAB performed operation. This MATLAB 
operation once again returned the desired black 
image to show that the program calculations where 
successful. 
 

 
 
The calculation time of the operations was 
measured to show the benefit of the Thread 
Building Blocks. This table once again clearly 
shows the full benefit of using thread building 
implementation in programming.  

 

Size TBB Sequential TBB 

640x480 122573.5 170861.3 

840x486 166873.1 230879.9 

940x602 214482.5 319985.4 

1080x1080 431267.7 648047 

3840x2160 2864193 4635286 

v) Boundary Extraction 
 

The final operation to be performed was boundary 
extraction. This operation is performed by first performing 
the convolution of an image with a kernel followed by the 
dilation of the resultant convoluted image.  This was the 
most difficult operation to perform because the convolution 
caused thread race issues. However, moving the thread 
operations outside the function made it possible to run the 
operation as  a thread safe operation. The image generated 
from the Terasic board is shown below. 
 

 
 
This image was generated, and it needed to be tested 

against a MATLAB generated image to ensure a proper 
operation. The MATLAB code for this final portion was also 
more difficult to perform. To generate the proper file to 
compare with the Terasic image, MATLAB also had to 
perform the convolution followed by the dilation. If 
boundary extraction was run in MATLAB it would not 
return the same result because the formula for boundary 
extraction is different. Therefore, the image was tested 
against the same 2 operations, and once this was successfully 
implemented, the desired black image was the result. 

 
This operation was once again compared against the 

sequential implementation and the implementation using 
thread building blocks. The thread building blocks once 
again proved to be much faster especially when the image 
files grew larger. 

 
 

Size TBB Sequential 

640x480 101327.7 137012.7 

840x486 128350.3 184715.5 

940x602 172444.7 244315.4 



1080x1080 346436.1 520706.8 

3840x2160 2241965 3557525 

 
 

CONCLUSIONS 

 

This project was designed to fully display the benefits of 

implementing thread building blocks in complicated 

operations. Although the operation was successful, and the 

thread building blocks proved to run faster in every 

instance, there are still some improvements that could be 

made. 

 

The first improvement that could be made would be the 

implementation of the parallel reduce function along with 

the parallel for operation. This would prove to optimize the 

program slightly more, although the benefits of the TBB are 

still fully shown in the current implementation. 

 

The next implementation that could be used to improve the 

program would be the separation of sequential and TBB 

operations. In the current operation, the program is set to 

perform the sequential operation followed by the TBB 

operation. This led to easier testing  and was effective for 

the demonstration required in the project. However, if this 

program were going to be used in a stand-alone 

environment, it would be beneficial to separate operations 

and give the user the chance to choose if they would like to 

run the sequential or the TBB operation. In the more 

complex operations, the program begins to take longer to 

run because it had to make it through both operations. If 

they were performed separately, they would prove more 

effective if only one operation was needed.  

 

The most difficult portion of this project was ensuring that 

the operations remained thread safe. In the beginning of the 

project, that is what led to the most errors within the project, 

but these were best fixed through the use or parallel_for 

outside of the function. This meant that the rows were sent 

separately, and the correct output could be calculated 

effectively.  

 

The project designed for this course was programmed to 

show the full effect of TBB in reducing operating times. The 

tables shown in the report fully demonstrate the benefit that 

is achieved using TBB. It was effective to show that in a 

practical environment TBB would be ideally used in all 

cases to provide full benefits to operating speed.  
.  

REFERENCES 

[1] https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm 

[2] https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm 

[3] https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm 

[4] https://homepages.inf.ed.ac.uk/rbf/HIPR2/close.htm

 

https://homepages.inf.ed.ac.uk/rbf/HIPR2/close.htm

