
Temperature Sensor Data communication over CAN
Reading temperature and sending data over CAN

List of Authors (Alen Cehajic, Josh Kulwicki, Nishchay Kulkarni, Yash Gandham)
Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: acehajic@oakland.edu , Jkulwicki@oakland.edu , nkulkarni2@oakalnd.edu , ygandham@oakland.edu

Abstract—CAN Architecture is widely used in the
automotive industry. The protocol is used to
communicate between two Nexys A7 boards. The
project will be useful in understanding an
industry standard that is highly regarded in the
automotive world.

I. Introduction

The motivation for this project is to better understand
the industry standard CAN protocol. CAN is a robust
communication system which is used widely in the
automotive industry. Getting a better understanding
of this application will allow for new skills to be
developed which are very highly desired in the
automotive industry. In this project there will be a
main focus on data communication in between two
Nexys A7 50T boards. The data to be communicated
will be received from the on-board temperature
sensor on the Nexys board. The temperature will be
read on board 1 and this reading will be then passed
to the second board via CAN. When the temperature
data is received by the second board, the temperature
reading will be displayed on the 7 segment display on
the second board. From this project understanding the
various CAN frames and their individual
responsibilities will be explored and understood
alongside implementing the concept which is a very
crucial part of the project.

II. Methodology

A. Design
The first design choice is to decide on what sensor
should be used for as an input. Due to the preference
of the Nexys Artrix-7 remaining stationary
throughout the experiment, it is decided that the
temperature sensor with the I2C protocol will be
used. The CAN architecture will be used as a
communication protocol between the temperature
sensor board and the 7-segment display board.

Initially there was an approach plan created, firstly to
remove the easy tasks and then tackle the harder task.
This first task set was to read the temperature, this
was done through the on board temperature sensor on
the Nexys A7 50T. The board has an Analog Device

ADT7420 temperature sensor, this sensor is capable
of outputting 16-bit resolution with a typical accuracy
better than 0.25 degrees.

B. Output Method

The next design problem is to decide on what form
the output should be. LEDs were a choice but due to
the complexity of binary numbers for the user the 7
segment display was chosen. This is due to numeric
displays being far easier to read than binary and
depending on the outside conditions of the board it
may be a necessity.

III. Experimental Setup

The CAN protocol and the temperature sensor were
experimented with separately. The temperature sensor
was implemented to the input board and works
successfully as a stand-alone unit. The CAN protocol
has yet to be experimented.

Figure 1 - Shows the initial stage of the CAN bus
design that was proposed.

mailto:acehajic@oakland.edu
mailto:Jkulwicki@oakland.edu
mailto:nkulkarni2@oakalnd.edu
mailto:ygandham@oakland.edu


IV. CAN Implementation

The project was split into two main procedures. First
one being the CAN communication protocol and the
second being the 7 segment display module. The
CAN communication protocol was implemented first.
The procedure started out with understanding how
CAN itself works, at the initial stage the
understanding was that CAN would need 4 lines,
power, ground, CAN signal high and CAN signal
low. But this was a typical application of CAN, but in
the scope of this project the goal was to only send
data. The “bus system” for data communication was
in effect not used. So taking a look at the goal again,
it was realized that the base requirement was to send
data to the second board. The second board was not
going to pass data back. Which is why the set up was
now changed to be power, ground and a CAN high.
Since the board had power from the USB there was
only a single wire connecting the two boards together
and that is how CAN communication was set up.
There was another procedure in the CAN module,
which was better understanding how CAN signals
work. The basics of a CAN signal are in the
following image:

Figure 2 - CAN frames and the bits for the frames.

The image is a little small but there are 5 main parts
in a CAN signal, first being the start frame which
signals if there is information present or not. This can
be represented by a 0 or 1. Second is the Arbitration
frame which is a total of 12 bits and it includes the
main procedure of filtering out on who exactly called
the bus. In the scope of this project it is one of the
least critical components because there is no “bus
system” but also there is only a singular module
which will be calling for the bus. Next is the most
critical set of bytes, which is the Control frame. Here
is where the data length will be received from. It's a
total of 6 bites and it includes the identifier bit
followed by the reserved bit and then followed by
data length indication, in this case 4 bytes shows the
total number of bytes of data. Next is the Data frame
itself, which is where the data can be seen. It’s a total
of 8 bits of data.

Next is the CRC frame which is the error detection in
the CAN signal. As of the date of writing this
progress report the CRC has not been implemented,
but the other frames prior to the CRC have been
implemented and tested. The CRC, Cyclic
redundancy check is an error detection code which is
very commonly used in digital networks. The goal of
a CRC in this CAN module is to make sure that the
transmitted data is actually sent correctly and the data
itself is validated. In the scope of this project the
CRC might not be of the highest priority because
only a singular bus is present and that bus is only
carrying X bits of data. The room for error in this
project is pretty small, but nonetheless the application
of a CRC is a crucial component for understanding
the CAN communication process. CRC involves a
certain set of predefined bits that are used for
generating a checksum, in the case of CRC-15-CAN,
the checksum generated will be 15 bits and uses the
hexadecimals 0xC599 to generate the checksum. The
transmitter and receiver use the same modules, in
theory when transmitted bits that carry the checksum
field are processed by the receiver CRC module, the
checksum generated by the receiver should be all
zeros, indicating uncorrupted data.

Figure 3 - Generic CRC diagram

The experimental setup shown in this paper was the
correct implementation of CAN based on our initial
studies, the only difference was as mentioned the
wire count. Other than that the process was the same.

The second part was the LED set up and testing, this
was a fairly straightforward task to accomplish
because similar tasks were done in the labs. So the
only part was setting the input data as the output on
the LEDs. This portion was a little challenging but it
was accomplished.

V. Bit Stuffing

The application of a bit stuffer was an essential
component for transferring data over CAN to the
second board. Bit stuffing is a technique used in
digital communication to prevent errors in data
transmission. It involves adding extra bits to the data
being transmitted to ensure that a specific sequence



of bits does not occur in the data, which may be
interpreted as a control signal by the receiver and
lead to incorrect interpretation of the data. The basic
idea of bit stuffing is to insert an additional "0" bit
after every n consecutive "1" bits in the data being
transmitted. For example in the application of this
project n is 5. If the data being transmitted is
"1111101111", bit stuffing would insert an additional
"0" bit after the fifth "1", resulting in the stuffed data
"1111100111". The receiver can then remove the
stuffed bits before processing the data. Bit stuffing is
commonly used in data communication protocols to
prevent errors caused by the transmission of control
characters in the data. The use of bit stuffing ensures
that the transmitted data from the first board to the
second board remains distinguishable from control
frames, which leads to reducing the chances of data
corruption and improving the reliability of data
transmission.

In diagram X we can see the implementation of the
bit stuffer which was used in this project.

Figure 4 - Bit Stuffing Flow Chart

VI. Bit unstuffing

Since a bit stuffer is implemented, the other board
would have to de-stuff the information that is being
sent. Bit unstuffing is the process of removing extra
bits that have been added to data during the bit
stuffing process. The purpose of bit unstuffing is to
recover the original data without the additional “0”
bits. The process of bit unstuffing involves examining
the incoming data for patterns that indicate stuffed
bits. When the receiver detects the stuffed bit pattern,
it removes the extra bit to recover the original data.
To explain the process of bit unstuffing the example
of bit stuffing will be referenced to. In the case of the
bit stuffing technique that inserts an additional "0" bit
after every five consecutive "1" bits, the receiver
looks for every five consecutive "1" bits and removes
the following "0" bit. The receiver in the project is
able to correctly identify and remove the stuffed bits
to interpret the data correctly. If bit unstuffing is not
performed correctly, the data tends to have errors
which has mostly led to the visual LEDs showing the
wrong temperature.

Figure 5 - Bit Un-stuffing Circuit Implementation

The block diagram in figure 5 displays how the bit
un-stuffer was implemented in the project to read the
data.



Figure 6 - Simulation of Transmitter and Receiver.
Bit-destuffing error is presented.

Figure 7 - Bit Un-stuffing Flow Chart

VII. FSM for CAN transmitter

and receiver

This is the main core of this project, first the FSM for
the CAN transmitter. This is what is responsible for
controlling the transmission of the data frames over
the CAN bus. The overview of the FSM working is
as follows:

IDLE state: The transmitter is waiting for a new
message to be received, until then it waits at this
stage. When a new message is received, it moves to
the arbitration state.

Validation State: Here the validation process involves
comparing the message identifier with other
messages. But in the scope of this project there is
only one message to be received so no comparison
actually takes place. So the message is always going
to be the highest priority no matter what since there is
only one message. The main checks here are the input
data from the temperature sensor, CRC and the
enable switches from the first stage.

Data State: Here is where the communication takes
place, the start of frame (SOF) is sent, which is being
checked in S3. In S4 is where the remainder of the
frames are transmitted to the second board. This
includes the data and the CRC. Next is the
acknowledgement state.

Acknowledgement State: This is the state where the
transmitting board waits for the acknowledgement
signal to be received. If no acknowledgement is
received it cycles through the Data state until the data
is completely sent and acknowledgement is received.
Due to the scope of the project focusing on 1-way
serial communication, the Acknowledgement State is
ignored.

The FSM transmitter flow chart can be seen in figure
8.

Image 1: Shows the CAN signal reading of
transmission in blue and receiver in yellow on an

oscilloscope.



Figure 8 - CAN FSM Transmitter Flow Chart

FSM for CAN Reciever

The receiver has the following states:

The IDLE state checks if there is any data getting
inputted, if there is none it will stay in state 1. The
input it’s specifically looking for is the CRC and
EDS. Since those two components allow for data
input determination. When that data is available the
second stage is entered. The main checks are the
CRC, EP and EP. S2 where all the data collection and
data decomposition is done. The CAN signal is first
sent to the bit un-stuffer, removing the “0” to then see
the real reading of the temperature sensor on the
board. Once the bit un-stuffer process has been

completed the data is then sent to the LEDs to display
the temperature. While in S2 the CRC module is
enabled, the CRC in this case processes the incoming
data to check if it has been corrupted during
transmission. If the checksum generated is not all
zeros, the transmission is corrupted. The CAN
receiver flow diagram is shown below in figure 7.

Figure 9 - Receiver FSM

VIII. Implementation - Testing stage

The image below shows the ideal design before the
implementation of a bit-stuffer. While the process of
creating the real design was all on 1 board with 1
finite state machine for CRC testing purposes, the
final design involves splicing the CRC testing design,
inserting a start and stop bit before transmission and
making 2 finite state machines for each board instead
of 1 big finite state machine.



Figure 10 - Original Design

X. Results and Conclusions

Figure 11 - Final Design

Transmission of data to the board through a single
wire is successful, but due to the faulty design of the
bit-stuffer and the inefficiency of the transmitter
design the data sent is slightly corrupted. During
testbench the CRC is successful standalone and the
bitstuffer is successful standalone; when both the
transmitter and receiver are combined into one
testbench file the data is uncorrupted. When the
transmitter and receiver are separated then the issues
are shown. The simulation of the transmitter shows
the data is uncorrupted yet it reveals the inefficiency
of the design as one transmission requires ~55 clock
cycles before the next set of data is processed instead
of the CAN standard of 11 bit between transmissions.
Using the data generated by the transmitter
simulation, the receiver simulation processes the
input as expected. The issue arises from the
checksum generated by the receiver, tracing back
shows the de-stuffer is de-stuffing the wrong bits but
not producing an error flag. Possibly due to the data
used does not require stuffing in the transmission
board the error is unnoticeable until a real
demonstration is taken place where the stuffing errors
are apparent. The current transmission design only
focuses on one data set at time, for efficiency the
finite state machine should be redesigned to have the

CRC and bit-stuffer work in parallel with different
data sets, this should reduce the transmission time by
approximately half. The bit-stuffer also should be
redesigned as while it stuffs bit as intended, it does
not cooperate with the de-stuffer.

Image 2: Final output

XI. References

[1] J. A. Cook, J. S. Freudenberg, “Controller
Area Network (CAN),” University of
Michigan, 13-Oct-2008. [online]. Available:
https://www.eecs.umich.edu/courses/eecs46
1/doc/CAN_notes.pdf [Accessed:
22-Mar-2023].

[2] S. Corrigan, “Introduction to the Controller
Area Network (CAN) Application Report
Introduction to the Controller Area Network
(CAN),” 2002 [online]. Available:
https://www.ti.com/lit/an/sloa101b/sloa101b
.pdf?ts=1681973692045 [Accessed:
20-Mar-2023].

[3] D. Llamocca, “CAN Bus + Automotive
Ethernet”, Oakland University, 5-Oct-2021.

[4] Wikipedia Contributors, “CAN bus,”
Wikipedia, Apr. 16, 2019. [online].
Available:
https://en.wikipedia.org/wiki/CAN_bus
[Accessed: 22-March-2023]

https://www.eecs.umich.edu/courses/eecs461/doc/CAN_notes.pdf
https://www.eecs.umich.edu/courses/eecs461/doc/CAN_notes.pdf
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1681973692045
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1681973692045
https://en.wikipedia.org/wiki/CAN_bus

