
K-Line Communication
Group Members: Jacob Alam, Adam Jesse, Trey Plichta and

Ruger Stellberger

Introduction:

- The Purpose of this project is to establish
K-line communication between a Nexys-A7
FPGA and a ISO 9141 OBD ECU simulator
board.

- Hardware components necessary for this
project include: Nexys-A7 FPGA, ISO 9141
OBD ECU simulator board, 12V to 3.3V down
converter circuit, and OBD-2 connector.

What is K-line Communication?

- K-line communication is a single wire
communication protocol that allows many
components to communicate via encrypted
data using PWM.

- It’s main use is in automobiles to transmit
electronic diagnostic signals between
Electronic Control Modules (ECMs) and
diagnostic equipment.

https://www.picoauto.com/library/auto
motive-guided-tests/k-line

https://components101.com/connecto
rs/obd2

Circuit Diagram

https://forum.arduino.cc/t/comunicatin
g-uno-iso9141-2/643216/8

Initialization Process

The steps to initialize the communication between the FPGA and emulator:

- Nexys issues 0x33 to emulator over 2 second period
- Emulator sends 0x55 to issue to Nexys Baud rate must change to 10.4kbps.
- Emulator waits between 5ms and 20ms for Nexys to configure baud.
- Emulator will now issue key bytes, separated by a time between 0 and 20ms,

that entail either 08 08 or 94 94.
- The Nexys will now wait between 25 and 50 ms to invert byte #2 and send it

back to the vehicle
- Emulator will now invert byte 0x33 and send it back to the Nexys completing

the process.

Initialization Process

Components Used in Initialization Process

Counters:

- Used to wait for messages and send data at different Baud rates.

Right Shift Registers:

- Used to shift out data using Pmod headers to Emulator board.

Falling Edge Detector:

- Allows the circuit to determine the status of a received payload.

Register and Comparator:

- Debugging: Used to verify correct bits being sent to Emulator.

 Init State Machine

- The Init State Machine is a state machine with 19
states. The purpose of this process is to complete
each step of the initialization process in its required
time and sequence.

- Some states depend on a reading for the counter
components to advance to the next state. This
allows the circuit to wait for the emulator wait times
and to allow the FPGA to send out data only when
necessary.

Initialization Circuit Diagram:

Reading PIDs from Emulator Board

- Once the Emulator board was initialized using the process previously stated,
the system was now ready to receive and read PIDs.

- The PIDs signify Parameter Identification codes that the Nexys will receive
from the Emulator board.

- In this segment, the Nexys board was used to receive the PIDs and display
them using the built in seven segment displays.

- PIDs require a baud rate of 10400 bps.
- The Data format is as follows:

Format Target Source DLC Data Checksum

Components used in Reading PIDs

Counters:

- Allows for correct timing when receiving and transmitting signals.

Multiplexor:

- Selects between different signals to be transmitted.

Right Shift Register:

- Shifts data to output pin.

Register:

- Holds data received from Emulator board.

PID State Machine

- This component functions in similar fashion to the
initialization state machine.

- This FSM contains 10 states that allow the circuit to
recognize and display PIDs.

- The PID state machine directly signals other
components such as counters, registers,
multiplexers and right shift registers.

- The PID state machine directly takes the inputs
from counters to allow it to wait designated times
when reading PIDs.

- The state machine also regulates the bits shifted
out of the Pmod headers connected to the emulator
board.

PID Circuit Diagram:

Seven Segment Serializer

- This component was used to receive signals from the PID state
machine and display the PIDs emitted from the emulator board.

- The PIDs are displayed in hexadecimal format.
- A multiplexor controls what PID is displayed on the seven segment

displays using PIDs stored in registers and a 2 bit select controlled by
switch 0 and 1 on the Nexys board.

Seven Segment Serializer Diagrams

Note: These components were not a focal point of the project.
 Therefore, VHDL code and diagrams were taken directly
 from notes and online resource website.

Falling Edge Detector

Both the Initialization FSM and the PID FSM utilized a
common falling edge detector circuit in order to begin
reading data from the emulator board. After receiving an
alert from the Falling Edge Detector circuits, these
control FSMs could proceed to the next state.

Inputs

clock, resetn, k_in (k_line within the falling edge detector)

Outputs

fall_edge

Video

https://docs.google.com/file/d/1ucz70qY8AWBECy90T03SopZuhJLZHjLx/preview
https://docs.google.com/file/d/1U1Yvd70Xf72ilixlRB_OWHYbosDx_9pd/preview

Live DEMO

References:

[1] B. Gruszczynski, “K-line Communication Description,” Nov. 2009. Accessed: Apr. 12, 2023.
[Online]. Available: https://www.obdclearinghouse.com/Files/viewFile?fileID=1380

[2] Llamocca, Daniel. VHDL Coding for Fpgas, Oakland University.
https://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

https://www.obdclearinghouse.com/Files/viewFile?fileID=1380

