
FPGA Security System
Andrea Arenas, Justin Klotz, Noor Alnounou

ECE 4710 Computer Hardware Design

Oakland University

Rochester, MI, USA

aarenas@oakland.edu, jjklotz@oakland.edu, Nalnounou@oakland.edu

Abstract— This project is intended for the

students to demonstrate the knowledge acquired

about Computer Hardware Design using VHDL.

The purpose of this project is to design a security

system that utilizes a simple user interface that

consists of a keyboard and a seven-segment

serializer. This security system will be capable of

performing a few operations including setting a

new pass code, entering a passcode, denying or

granting access, locking the user out of the

program if a wrong passcode is entered too many

times as well as restarting a guess.

I. INTRODUCTION

Our project consisted of creating a security system

requiring a 4 digit code. On startup, the user has to set

a new 4 digit code and will be prompted by the blue

LED. the user will enter the code using a PS2

keyboard that is decoded by the scan code decoder and

then stored in 8 4-bit registers. The correct code on

startup will be stored in the first 4 of 8 registers with

each register holding a numerical value of 0-9. Once

the correct code is set, the blue LED will turn off

telling the user they can begin to guess the correct

code. The guessed code will be stored in the last 4 of 8

4 bit registers. Once the 4th digit during the guessing

stage is entered, the code will be sent to a 16 bit

comparator that will compare the output of the

registers containing the saved code with the code

currently being entered. If the comparator outputs a 1,

the LED will shine green to signify the code was

correct. If the comparator outputs a 0, the LED will

shine red in this case. For each failed attempt, a 0 to 2

counter will be enabled and start to count. If the user

has 3 failed attempts, the LED will shine purple. This

will then enable a 20s counter. When the 20s counter

reaches 20, the user will go back to state 2 and have

another 3 attempts to try at the code. The user is also

able to erase the guessed code in the registers if they

make a mistake and do not want to waste another

guess. This is achieved by pressing the BTNC button

at any time a code is being entered. Lastly, the

seven-segment display will show the numbers as they

are being entered.

II. METHODOLOGY

mailto:aarenas@oakland.edu
mailto:jjklotz@oakland.edu
mailto:Nalnounou@oakland.edu


Figure 1 - Block Diagram

The methodology for this project involves several

steps. First, research and analysis of security system

design using VHDL will be conducted to

comprehensively understand the subject matter. Next,

the requirements and specifications for the security

system will be established, including the necessary

hardware components and their functions. The VHDL

code will then be written and tested using simulation

software to ensure that it operates correctly. Finally,

the system will be implemented on a hardware

platform and thoroughly tested to ensure that it meets

all the project requirements. Regular feedback and

revisions will be incorporated into the project to ensure

its successful completion.

Finite State Machine

An FSM is a model of a system that has a limited

number of states that it can be in, and it can only move

from one state to another in response to specific inputs.

This FSM has 10 states, represented by S1x, S2x,

S3x, S4x, S1, S2, S3, S4, S5, and S6. The inputs to the

FSM are resetn (reset signal), clock (system clock

signal), done, equal, Zthree, Ztwenty, rst (reset), and

ZLED. The FSM also has several output signals

including sclrAfter, sclrNew, sclrthree, Ethree,

sclrtwenty, Etwenty, doneSet, countEnable, Ed, ELED,

sclrLED, sel (selection signal), address (address

signal), and locked out. The process named Trans

describes how the FSM transitions between states.

The process checks the current state of the FSM

and the inputs to determine the next state. If the reset

signal is low, the FSM is in the initial state S1x. If the

reset signal is high, the FSM checks if the done signal

is high to transition to S2x. The same process is

repeated for the other states. The final state S5 is

reached when the input equal is high, and the input

ZLED is low, or when the input Zthree is high and

ZLED is high. The final state S6 is reached when the

input Ztwenty is high. In states S1x-S4, if the rst signal

= ‘1’ at any time, the state will go back to the start of

the correct code setting or the guessed code setting

states. S1x, S2x, S3x, S4x states are for setting the

correct code and S1, S2, S3, S4 are for setting the

guessed code. That would mean if the rst button is

pressed at any time during the setting of the correct or

guessed code, the FSM will go back to either S1x or

S1 depending if the user is in the guessing or setting

the correct code stage.

2



The process named Output describes the FSM

outputs. Depending on the current state, the output

signals are assigned different values. The signals

address, and Ed are used to select a specific memory

location for storing data(i.e which registers to store the

numerical data, enable, and synchronous clear). These

signals also decide what registers get enabled and

cleared via the decoders. The signal sclrNew is used to

clear the new code input, and the signal sclrthree is

used to clear the counter which is counting from 0 to 2.

The signal sclrtwenty is used to clear the locked out

counter. The signals Ethree and Etwenty are used to

enable the counters, respectively. The signal doneSet

indicates that the new code has been set. The signal

countEnable enables counting. The signals ELED,

sclrLED, sel, lockedout control the RGB LED display.

Figure 2- FSM

PS2 Keyboard

In order to receive input the PS2 keyboard, which

is a hardware interface used to connect a keyboard or

mouse to a PC, was implemented. When a key is

pressed, the keyboard transmits one byte. Every key

has its own scan code definition which is an 8 bit

signal. The byte is sent to the host every 100 ms until

the key is released. When the key is pressed down and

released, the PS2 keyboard component will output

“F0” to signify the component to read the scan code of

the key being pressed. The scan code of the key will

then be outputted. For this project, the keys for

numbers 0 to 9 are used as input for the security code.

The input received from the keyboard is used to set

and guess codes.

Figure 3 - PS2 Keyboard Values

PWM

Different color combinations can be achieved by

varying the brightness of the red, green, and blue

LEDs through pulse width modulation. The 4 MSB are

used to calculate the duty cycle of the red LED, the 4

LSB for the blue LED, and a set of 4 bits “0001” for

the green LED. These 4 bit values are multiplied by

TPWM, which is set to 50000. A frequency of 2kHz is

used in order to obtain a good color.

3



Figure 4 - PWM FSM

RGB LEDs

The Nexys A7 board has two RGB LEDs. We

utilized one of them in order to indicate to the user if

the code which has been entered is correct by shining

green. In a similar manner if the code which has been

entered is incorrect, the LED will shine red. Lastly,

when the user has entered an incorrect code past the

amount of times allowed, the LED will shine purple

until the system allows the user to try again.

Decoders

The first decoder decides which register will be

enabled based on the “address” signal from the FSM.

The second decoder will decode the scan code from

the keyboard to a 4 bit number of 0-9. The third

decoder will clear the correct code registers or the

guessed code registers based on where in the FSM the

program currently is. This function is only activated

when the rst or BTNC button is pressed.

Figure 5 - RGB LEDs

Seven-Segment Serializer

The seven-segment display is used in this project

to display the numbers which the user enters by using

the keyboard. The serializer is used in order to be able

to use more than one seven segment display. This part

consists of a multiplexor which receives data from the

registers which store the input from the keyboard. This

data is converted by the HEX to 7 segment decoder in

order to display the numbers. A 2-to-4 decoder is what

determines which of the seven segment displays is

used for each number. Lastly, a counter which keeps

each digit illuminated.

Figure 6 - Seven-Segment Serializer

4



III. EXPERIMENTAL SETUP

The experimental setup for the Computer

Hardware Design project using VHDL will require the

following hardware components: a development board

with a compatible FPGA, a keyboard, a seven-segment

display, RGB LEDs, and a power supply. The VHDL

code will be written using a compatible software tool

like Vivado. The project will be divided into modules,

including a keyboard module, a seven-segment display

module, a passcode module, and a control module. The

keyboard module will scan the keyboard for user

inputs, which will be displayed on the seven-segment

display module. The passcode module will store and

verify user passcodes, while the control module will

manage the entire system, including granting or

denying access and locking the user out after

three-time failed attempts. The entire system will be

tested thoroughly for functionality, and any bugs or

errors will be corrected before finalizing the design.

IV. RESULTS

After several testings, we were able to achieve our

desired outcome. The security system is able to take

input from the keyboard in order to set a security code,

as well as accepting the correct combination after

creation, denying access to the system when an

incorrect combination is entered, and preventing the

user from trying again after a set amount of wrong

combinations.

V. CONCLUSION

This project aims to showcase the students'

knowledge of Computer Hardware Design through

VHDL. The goal is to design a security system with a

user-friendly interface using a keyboard and a

seven-segment serializer. This system will have

several functions such as setting a new password,

entering a password, granting or denying access, and

locking the user out of the program if too many

incorrect passwords are entered. Overall, this project

will demonstrate the student's ability to apply their

skills to real-world applications.

VI. REFERENCES

[1] Donatus, Ayodeji Duyilemi, et al. "FPGA: Based

Security login System."

[2] Aminuddin, Zaim Zakwan, et al. "An FPGA

application of home security code using verilog." Int J

Reconfigurable & Embedded Syst 11.3 (2022):

205-214.

[3] Brown, Arthur. “Nexys A7 Reference Manual.”

Nexys A7 Reference Manual - Digilent Reference,

Digilent,

https://www.secs.oakland.edu/~llamocca/Courses/ECE

2700/Boards/NexysA7_rm.pdf

[4] Llamocca, Daniel. VHDL Coding for FPGAs,

https://www.secs.oakland.edu/~llamocca/VHDLforFP

GAs.html

[5] Llamocca, Daniel. Winter 2022 - ECE4710:

Computer Hardware Design,

https://www.secs.oakland.edu/~llamocca/Winter2022_

ece4710.html

[6] Llamocca, Daniel. Unit 3 notes,

https://www.secs.oakland.edu/~llamocca/Courses/ECE

4710/Notes%20-%20Unit%203.pdf

5


