
Nexys Racer

Alexander Saikalis, Shane MacFadyen, David Stamatovski, Seeyam Chowdhury

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

asaikalis@oakland.edu, shmacfadyen@oakland.edu, dstamatovski2@oakland.edu, seeyamchowdhury@oakland.edu

Abstract—By utilizing the multitude of available peripherals,

block RAM, and clock management tiles on the Nexys A7

development board, a VGA-based racing game was able to be

designed and implemented. Fundamental digital design

principles were able to be applied for the project to be built

from the bottom-up. State machines were used to control the

flow of the game. Image data was stored in ROM for greater

image detail and control. The consideration of board memory

constraints and the ability to meet proper timings relative to

input clocks were necessary in designing this project.

I. INTRODUCTION

The objective of this project was to understand and apply
the variety of features that the Nexys A7 board has to offer.
As a development board, multiple peripherals, such as a
VGA port, directional buttons, and seven segment displays,
are pre-installed on the board and able to be used as input
and output interfaces (I/O). Furthermore, by using an FPGA,
the architecture of a project can be built with full control
over the system by leveraging the ability to design and
implement logic blocks from the bottom-up. Finally, the
Nexys A7 is built with accessible block RAM and clock
management tiles (e.g., phase-locked loop) that can be used
in the design. Ultimately, these features allow a high degree
of flexibility in projects that can be built.

This project, Nexys Racer, is a VGA-based video game
that took advantage of the flexibility provided by this FPGA
board. In the design of the project, several concepts learned
in class such as block diagram design, state machine design,
fundamental digital logic design, and use of peripheral I/O
were applied. Additionally, due to this project’s large design
relative to assignments and laboratories in the class, a deeper
understanding of memory instantiation, timing constraints,
and project organization was necessary.

The goal of this game is for a player to control a race car
and reach the finish line without losing all available lives. To
add difficulty, enemy cars may be present in areas of the
racetrack that the player must avoid. Furthermore, the player
is able control their speed which allows for additional control
of the game. Altogether, this project utilized the following
peripherals on the board: the VGA port, all directional
buttons, both RGB LEDs, all LEDs and both seven segment
displays. Each of these peripherals are intertwined and
controlled by game logic, part-specific controllers, and user
input. This report provides the implementation details of how
the game was designed and able to be accomplished.

II. METHODOLOGY

The design of our Nexys Racer project was split into
many separate modules that could be individually tested.
Each of these modules is shown in our top block diagram
(attached as a separate image file). The top diagram connects
each of the separate components to the outputs and other
internal components.

Due to the timing requirements of the 640x480 pixel
VGA display, many components of the design were run with
a 25.2 MHz clock obtained by utilizing a PLL provided with
the system clock of 100 MHz.

A. Main Control Circuit

1) Main FSM

FSM_Main controls a lot of the core functions of the
design. It takes in data signals from collision detector, the
edge detectors, distance counter, speed control and from the
lives components and uses it to control the game state signal.
The game state signal is the core signal that FSM_Main
controls and outputs, it determines if the game is being
played or paused if the player has won or lost, or if they are
on the main menu. FSM main then sends this signal to the
other components so then they can change their behavior
based on the state if necessary. Game state is set based of the
states in FSM_Main. There are 8 states, each governing what
the player is interacting with.

Fig. 1. Main FSM Diagram

As shown in the diagram above, state 1 and 2 both
control the "start" game state with state 1 being the main
menu and state 2 being a delay state. State 1 uses btn_c_push
so that the user can decide when to go to state 2. State 2
takes in input from vs_edge and uses se_vctr for making a
delay before moving onto state 3. State 3 outputs the game
state “active” and it is the most important state because it
signifies that the player is playing the game. Using the
information from the other components mentioned earlier,
FSM_Main determines what states are triggered next. State 3
begins with changing the game state to “active” and e_gen to
1. State 3 then uses information about collisions to determine
the collision value with the signals clsn_next and clsn_lr
from the collision detector. After that, in state 3 the
lives_zero signal and dist_max signal are used to determine
if the game has been won, lost, or is still ongoing. We enter
state 4 if lives_zero ever becomes one before dist_max
becomes one. If this isn’t the case and dist_max signal
becomes one before lives_zero does, then the player has won
leading to state 6. State 8, the state for being paused, only
triggers when lives_zero is zero and dist_max is zero. It then
checks for btn_c_push to be one while the game is in the
“active” game state. If all 3 of those values are zero, then it
stays within state 3 as the game continues. State 4 then
creates a delay like state 2 before the game over, with state 5
changing the game_state to be “game_over” and then
delaying to wait for btn_c_push to continue and restart the
game heading back to state 1. State 6 is very similar to state
4 and state 2 with how it uses vs_edge and se_vctr as a delay.
State 7 mirrors state 5 and controls continuing to the
beginning of the game, waiting on the btn_c_push value to
be zero. State 8 is an extra state used to control when the
game is paused. State 8 loops back into state 3 after pausing
is over, waiting on btn_c_push for either pausing or leaving
pause.

2) VS Edge Detector

 The main FSM requires a signal that sends a ‘1’ during

the cycle the screen begins to refresh. Since the screen

begins refreshing during the vertical sync, this input signal

for the main FSM can be found by using a rising edge

detector on the VS output VGA signal.

B. Button Input Management

All the inputs to the system are handled by the button

input control system. The only inputs are 5 buttons, the 4

directional buttons on the d-pad and the 5th one is the center

d-pad button. These button signals are all passed through a

debouncer prior to any use of these signals to not cause any

issues with repeated signals. The four directional d-pad

buttons are passed into a small fsm that handles when the

values of the signals that lead to the rest of the components

are updated by the buttons. This fsm uses the collision as the

update signal and this signal is from FSM Main. Once the

collision signal is one it moves to state 2 where it stays until

btn_en_sig becomes one. When btn_en_sig becomes one it

moves back to state 1 to start updating again. Btn_en_sig is

an internal signal that is controlled by a nor gate with all the

btn signals fed into it. The center button (BTNC) does not

get handled by this fsm, instead its lead into a rising edge

detector which then converts the signal into a pulse which is

now the btn_c_push signal which gets passing into FSM

Main.

Fig. 2. Button Input Block Diagram

C. Player/Speed Control

The player_ctrl component is a register that outputs the

position of the player based on several inputs. The two main

inputs that control the lane position of the player are the left

and right buttons. The other inputs of the player control are

E, i_rst, and i_vga_frame which are used to perform logic in

the player control. The player_ctrl also contains a delay

counter that outputs a signal called “delay” when it reaches

its max value in order to prevent the player moving

immediately upon pushing a button. If the i_vga_frame, E,

and delay signals are “1”, the player_pos can then be altered

by user input. If the left or right buttons are selected, those

respective signals will become “1” and move the player. If

sclr or i_rst becomes “1”, the player_pos output will reset

back to its original position. There is also a check for the

bounds on the player's position so that the player does not

go too far to the left or right.

The speed_ctrl component is also a register similar to the

player_ctrl that controls the speed of the player based on

user input. The inputs that accelerate/decelerate the speed

are the up and down buttons, respectively. The enable signal

is the E_gen signal that comes from FSM_Main while the

synchronous clear is determined by a logical OR operation

between the collision signal and start signal which both

come from FSM_Main. The speed has a minimum value of

zero and the max value is determined by a generic number

of bits. Each button push (up or down) changes the value of

the speed and, similar to the player control, there are limits

so that the speed does not exceed its max or go below zero.

D. Obstacle Control

 The obstacle control component controls the generation

of obstacles as well as all signals related to these obstacles.

It generates 6 different signals/vectors: shift enable, zero

speed, obstacle positions, obstacle enables, frontwards

collision, and left/right collision. The shift enable signal,

E_sft, asserts a ‘1’ during every clock cycle the obstacles

shift. The zero_speed signal is set to ‘1’ when the obstacles

are not moving. The obstacle position array contains the

current obstacle position for each lane, while the obstacle

enable vector stores a ‘1’ for every obstacle lane that is

enabled. The frontwards and left/right collision signals

contain a ‘1’ if a collision is occurring in that direction. The

following figure shows the top block diagram for the

obstacle control unit.

Fig. 3. Obstacle Control Block Diagram

 The shift controller, obstacle generation controller, and

collision detector are explained in the following sections.

Since the obstacles are generated by referencing their

positions from the bottom of the obstacles and the VGA

controller requires that the obstacles are referenced from the

top, the obstacle reference converter is needed to change the

reference point of the obstacles from the bottom to the top.

Due to a boundary on the right and left sides of the screen,

the minimum input player position is not zero. By

subtracting RL_OFFSET from the player position, the

player position will then be set up for the collision detector

logic. RL_OFFSET can be determined from the other

constant project parameters using the following equation.

1) Shift Control

Fig. 4. Shift Control Block Diagram

 The shift controller design is shown in the above figure.

This circuit first uses an unsigned divider circuit to perform

the operation k divided by the speed. K is a constant that can

be derived using the following equation.

 Since k is about 3 million, the unsigned divider uses 22

bit inputs, which causes a substantial output delay. To fix

this issue, most of the components used in this project are

run at 25 MHz and the divider output is sent to a register

that acts as a buffer in order to reduce timing issues. The

multiplexors are used in order to set the register input to a

value that will cause no shifting to occur when either speed

is zero or a collision occurs. The output of a counter is

compared to the register output. When the counter value

becomes greater than or equal to the register output, the

counter is reset and the shift enable signal is set to ‘1’. This

process is infinitely repeated in order to generate the shift

enable waveform.

2) Obstacle Generation Controller

Fig. 5. Obstacle Generation Control Block Diagram

 The above diagram displays the obstacle generation

controller design. This design utilizes 3 free-running

counters in order to pseudo-randomly generate numbers for

the obstacle lanes, lane generation conflict resolution delay,

and delay between obstacles.

 The obstacle lane signal is input into a FSM-enabled

decoder that creates the signal to instruct which obstacle to

enable. After an obstacle is enabled, the obstacle position

counter increases every clock cycle that E_sft is ‘1’ until the

maximum position is reached. At this point, the enable

signal will be reset to ‘0’, disabling the obstacle. The

obstacle conflict signal will be set to ‘1’ when any obstacle

is being instructed to load when it is already enabled. When

this occurs, the obs_next signal will be used to tell the FSM

when it should try to resolve this conflict through generating

a new obstacle.

 The obstacle delay will be loaded into a register

whenever the FSM needs to begin delaying between

generating obstacles. The resulting stored value is then

compared with a counter signal in order to determine if the

correct number of E_sft cycles have occurred, which is

implemented through an equality comparator.

3) Obstacle Generation FSM

Fig. 6. Obstacle Generation FSM

 The above diagram describes the FSM used for the

obstacle generation control circuit. State 1 is the state where

all the obstacles have been reset and the user is currently in

the start menu. All other states return to this state whenever

the start signal is ‘1’. State 2 is the obstacle generation state.

After the shift enable signal is set to ‘1’, an obstacle will be

instructed to load. If there is a conflict, the FSM is sent to

state 3 for obstacle conflict resolution. Otherwise, is goes to

state 4 to begin waiting until another obstacle can be

generated. In state 3, the FSM will attempt to load another

obstacle whenever the obs_next signal is set to ‘1’. If there

is no longer a conflict, the FSM leaves state 3 to go to state

4. In state 4, the FSM increments the delay counter every

cycle E_sft is ‘1’. When that counter value finally becomes

equal to the pseudo-randomly generated delay, the FSM

returns to state 2 in order to generate another obstacle.

4) Collision Detector

 The collision detector component operates based on two

main process statements, the obstacle and player processes,

and combines the results into the output collision signals

using logic gates.

 The obstacle process determines two separate vector

signals using the obstacle positions and enable signals for

each lane. The first vector signal, obs_next, contains a bit

for each lane that will be set to ‘1’ when the obstacle in that

lane is directly in front of a potential position the player

could be in. The second vector signal, obs_lr, contains a bit

for each lane that will be set to ‘1’ when the obstacle in that

lane is directly to the left or right of a potential position the

player could be in.

 The player process first determines the next player

position using the current player position, the left button

input, and the right button input. Then, a vector signal,

player_lane, will be used in order to store a ‘1’ for each lane

the player will occupy with their next player position.

 The obs_next, obs_lr, and player_lane signals can now

be logically combined in order to create the collision output

signals. By using a bitwise AND operation between each

obstacle process vector and the player_lane vector and then

reducing the resulting vector to a single bit using OR gates,

the signals for collisions in front (clsn_next) and to the sides

(clsn_lr) of the player can be determined. The resulting

logic circuit is shown below.

Fig. 7. Collision Determination Logic Circuit

E. Distance and Time Serializer

The serializer’s purpose is to output the distance of the

player’s car, as well as the time the game has been running

for onto the seven segment LEDs provided by the FPGA.

The serializer component is also embedded with three

counters: a one second counter, a distance counter, and a

time counter. The inputs of this component are E_sft which

comes from the obstacle control, E_gen which comes from

FSM_Main, and start which also comes from FSM_Main.

As suggested by its name, the one second counter is used to

output a signal of “1” every second. This is done by

adjusting the generic “COUNT” parameter in the counter

based on the clock and the cycle time. For example, a 25

MHz clock at a cycle time of T = 10 ns, the “COUNT”

should be 25*(10^6).

The distance counter outputs the distance the player has

traveled for the duration of the game, holds a maximum

value of 9999, and is enabled by a logical OR operation

between E_sft and start. In order to feed in each digit as a

separate signal to the serializer, the count of the distance

(which is a std_logic_vector consisting of a generic number

of bits) is converted to an integer. To break apart this integer

number into each one of its digits in unsigned decimal, we

use the modulus operator. The formula used for this is num

= (x - (x mod y) / y, where x is the decimal number and y

represents the magnitude of the place the desired digit holds.

To then update the number and retrieve the next digit, we

subtract the original number by its magnitude multiplied by

that particular digit. For example, to retrieve the “1” in

“1234” is as follows: (1234 - (1234 mod 1000)) / 1000 = 1.

Now we just need to focus on 234, meaning the subtraction

operation that must be performed is 1234 - (1000*1) = 234.

The digits are then converted back to a std_logic_vector.

The distance counter outputs a signal “dist_max” as a “1”

when reaching its maximum value.

The time counter is enabled when the one second

counter or when the start signal is “1”. The time counter has

a maximum value of 999 seconds, and its output is also

broken apart the same way the distance counter’s is in order

to input it to the serializer. All counters are cleared when the

start signal is “1”.

The serializer receives eight inputs (four from the output

of both the distance and time counter) and outputs the

results onto the seven segment LEDs of the board. The

inputs are fed into a MUX that selects for a digit based on

the state of the FSM built into the serializer. The output of

the MUX is then input to the hexto7seg decoder that takes

the 4-bit binary number and converts it to a value in hex

from 0-9. The seven segment LEDs are turned on by a 3-to-

8 decoder that also uses the same select signal from the

FSM. The four left-most displays show the distance while

the three right-most show the time. The fifth seven segment

display was turned off to keep the two values distinct and

easier to read.

F. Lives Control

The lives controller serves two purposes: first, to keep

track of the number of lives that the player has available,

and second, to dynamically control the RGB LEDs that are

located next to the directional buttons.

The number of lives is implemented as a decreasing

counter with an initial value set to three. The enable signal

of the counter is the collision signal or a synchronous clear

caused by restarting the game that is passed into the lives

control entity. This counter provides a terminal count signal

to the main FSM. When the counter reaches zero, the zero

lives output is set to a logic high. Additionally, this counter

keeps track of the number of lives as an internal signal.

The RGB LEDs display different effects depending on

the current state of the game and the number of lives that a

player has remaining. The following table summarizes these

effects.

TABLE I. RGB LED EFFECTS

Game State Lives Left LED Right LED

START - Gradient Gradient

ACTIVE 3 Green Green

ACTIVE 2 OFF Green

ACTIVE 1 Yellow Yellow

PAUSE # Lives Pulsing Pulsing

WIN - Green Green

GAME OVER 0 Red Red

G. VGA Controller

The VGA controller is responsible for setting the output

signals, which consist of the 12-bit RGB data, the horizontal

synchronization signal, and the vertical synchronization

signal to the display monitor. This controller is composed of

three main aspects: a VGA driver, different screens, and a

priority encoder. The VGA driver is the core component of

the controller and provides signals that are crucial to what is

displayed on the screen. The different screens contain data

available to be drawn on the screen (e.g., a title screen or the

player car). Finally, the priority encoder selects which

screen(s) should be displayed on the display and is primarily

a function of the current game state.

1) VGA Driver

The operating principle of the VGA protocol works

around two counters that designate a horizontal and vertical

coordinate (referred as the column and row henceforth) that

increment on each rising edge of a pixel clock. The value of

the pixel clock depends on the resolution of the display;

since this project uses a 640x480 pixel resolution, our pixel

clock had a frequency of approximately 25.2 MHz. It is

important to note that this resolution refers only to the active

region of the display. After the column and row reach their

respective active maxima, the screen enters a blanking

period that consists of a front porch, synchronization pulse,

and a back porch (the length of each depends on the

resolution). The synchronization signals provide the display

a signal to indicate that a column or row is finished and to

retrace to the next position. During the blanking period, the

column and rows are still incrementing. For our resolution,

there are a total of 800 columns and 525 rows. Once the

blanking period is complete, the counters reset to zero. This

process is a single frame which has a frequency of 60 Hz.

Thus, our VGA driver produces 60 frames per second with

16.67 milliseconds per frame. The image below provides a

visual representation of the process.

Fig. 8. Standard VGA protocol

The conventional approach to designing a VGA driver

can be modeled according to the preceding logic. The

difficulty, however, is that because of the sequential logic

associated with the column and row counters, there is a

delay to be accounted for. Furthermore, to implement

images in the project, hardware sprites stored in ROM are

used. This implicates an additional delay due to ROM data

elements being accessible only on the rising edges of a

clock signal. These delays made drawing and positioning

the sprites on the screen, specifically with column and row

values of zero, impossible to accomplish.

To solve this problem, this project’s VGA driver was

designed differently. Instead of the blanking period being

set after the active display, the blanking period was set

before the display. This meant that instead of the column

and row starting at zero, they started at -160 and -45,

respectively. To handle the negative numbers, the column

and rows are signed values. Other helpful features were

added to the VGA driver which included signals that:

indicate the start of each new frame, indicate the start of

each new line, and indicate when the screen is active.

Finally, since all the signals were registered, the column and

row values had an additional register to match timings.

Fig. 9. VGA driver block diagram

2) Screens

Within the VGA controller, multiple sources of data

corresponding to specific screen states were available to use

depending on the state of the game. Several of these screens

are designed to take up the entire screen and display discrete

states of the game. These include the start (title) screen,

pause screen, game over screen, and win screen. These

preceding screens directly map to their respective states as

dictated by the main FSM. However, when the game is

active, there are several screens that are superimposed on

one another, and where the priority encoder in the VGA

controller becomes important. One example of how this

works is the player’s car appearing to be drawn over the

racetrack pavement. Behind the scenes, both screens are

active at the same time, with different RGB values at the

same location. With the priority encoder, only the player car

is selected to be drawn at the desired location on the screen.

Each screen shared a similar structure in its composition.

This composition included screen specific logic (e.g., a

color gradient being controlled by a timer to display as a

background), a sprite drawing FSM, a sprite ROM, and a

register that stored RGB data and a signal indicating if there

should be anything drawn on the screen (active).

a) Sprites

To provide images with detail and the ability to be

dynamically placed with ease, this project utilized hardware

sprites. In essence, these are images that have mapped out

RGB values depending on the indices of the columns and

rows. Because of the size of many of these images, this

project stored sprite data within ROMs. To do this, a script

was written in Python that reads the RGB data of each pixel

within an image, for any given resolution, and then outputs

a VHDL file that is structured such that Vivado’s synthesis

tools can infer it as ROM. Correct inference occurs when

there is a data array (prefilled with values) that can be

accessed with specific element (address) values on each

rising edge of the clock.

Some of the images, such as those containing text, were

created with image creation tools, such as Affinity Designer.

The caveat with creating images this way was that dots per

linear inch (DPI) and RGB fidelity are both different in

modern displays when compared to 12-bit color VGA

display available from the board. There was a loss of quality

between the image and the final product- particularly if any

gradients were used. For this reason, objects such as the

player and enemy cars were drawn with a tool specifically

meant for pixel art called Piskel. The figures shown below

provides an example of a logo and the player’s car.

Fig. 10. Paused logo made using Affinity Designer

Fig. 11. Player sprite made using Piskel

b) Sprite ROM

Each image had a unique ROM file. After inference,

Vivado placed these files into the board’s various ROM

blocks using the following depths (measured in bits): 8,192,

16,384, and 32,768. The depth that the sprite requires is

dictated by the product of its width and height. This was an

important detail to consider since Vivado would place a

sprite with a depth of 8,193 into a ROM with 16,384 which

not only increases the time to synthesize but also increases

ROM utilization on the board. The ROM’s addresses

provide RGB data starting from the top left of the sprite

down to the bottom right of the sprite. The image below

shows an example of a ROM block diagram.

Fig. 12. Player car ROM block

Altogether, the multitude of ROM inferences can be seen

in Vivado’s synthesis report for the project as shown below.

Fig. 13. Vivado block RAM synthesis mapping

c) Sprite FSM

While there were multiple ways of drawing the sprite on

the screen, the most convenient way to do so ended up being

to utilize a state machine. The sprite FSM mirrors the way

the VGA driver increments the display column and row

indices. For the state machine, the sprite column and row

are analogous to the display coordinates; the only difference

is that the sprites’ dimensions are smaller. The crucial

signals provided by the FSM which are used by higher order

entities are the sprite address and an active signal.

Importantly, the FSM is easy to use as it requires only

two key input signals. First, there is a start signal. The logic

of this signal is set externally within the screen specific

logic of each screen. Start should be active high when the

VGA display column and row are equal to where the sprite

should begin. Second, there is a starting column value

(which must be signed) that determines the value of the

column the sprite should begin drawing at.

The different states are as follows. First, when nothing is

being drawn, the state remains in IDLE. Second, when the

start signal becomes active high, the FSM’s state switches to

START. At this point, the registered values of the sprite row

and sprite address are set to zero. The state now becomes

AWAIT which signifies the start of each line in the sprite. As

a result, the registered sprite column is set to zero. When the

VGA column is equal to the start column minus two (which

accounts for delays caused by multiple clocked values), the

state switches to DRAW. During this state the active signal

is high and the sprite column index increments. Provided

that the sprite column and rows are within proper bounds to

ensure a correct increase of position, the sprite address also

increments. If the sprite column is not in its final column

(determined by the sprite’s width), the DRAW state will

remain persist to draw one line of the sprite. While in this

state, the active signal is set to logic high. After the final

column, the state machine checks if sprite row index is in its

final row (determined by sprite height). If it’s not, the state

switches to NEXT LINE, increments the sprite row, then

switches the state back to AWAIT. If it is the final row, the

sprite is finished drawing and the state is set to DONE

before switching the state back to IDLE. The state machine

can be visualized in the image below.

Fig. 14. Sprite FSM diagram

d) Screen Registers

The interaction between the screen logic, sprite FSM, and

sprite ROM allows for each screen to display the sprites

according to the desired behavior. The screen logic dictates

when and where the sprite should be drawn, the sprite FSM

provides addresses to the sprite ROM and supplies an active

signal, and the sprite ROM provides the RGB data of the

from the supplied address. For sprites that have motion, an

additional registered process was included to shift the start

position at each vga_frame signal to ensure smooth motion.

Finally, the RGB data and active signals are registered. The

register also contains priority encoded logic to select which

data should be stored (if there are multiple data sources). An

example of a more complex module is shown below.

Fig. 15. Paused screen block diagram

3) Priority Encoder

Since all the screens are always active, it was necessary to

select which screen(s) should be enabled at a given time. To

do this a combinatorial process exists in the VGA controller

that properly selects what should be displayed. Conditional

statements that occur higher up in the conditional chain have

priority in the display. Many of the basic state screens (e.g.,

win screen) can only occur when the game state is on a

particular state. Nothing else is displayed at that time. On

the other hand, the desired display might be multiple screens

superimposed on one another. For the pause screen, not only

is the paused dialogue on display, but also the entirety of the

paused racecars and racetrack in the background. To

accomplish this, the priority encoder will draw the screens

on top of one another according to the conditional hierarchy.

This culminates in the following structure of the VGA

controller.

Fig. 16. VGA controller block diagram

III. EXPERIMENTAL SETUP

First, simulations were run on many of the individual
components to ensure they operated as expected. For some
of the components, the constant parameters were scaled
down to reduce simulation time. The resulting simulation
testbenches were verified by observing various internal and
output signals to confirm they responded correctly to the
chosen input stimuli. Simulations were run on the main
FSM, player control, speed control, obstacle control, and
VGA control VHDL files to ensure they worked correctly.

After combining all the files into a single top file, it was
very difficult to confirm the circuit was operating correctly
from viewing the simulation since many of the output signals
are hard to interpret correctly. Therefore, the top file for our
project was tested by implementing the design on the board
and viewing the screen on an external monitor connected by
VGA. This allowed us to visualize the output of our design
and ensure proper functionality.

IV. RESULTS

The Nexys Racer game performed as intended regarding
the various game screens, button inputs, and the overall
gameplay. The testbenches and simulations were created to
make sure each component functions in the way it was
intended and showed waveforms that confirmed the
components were working. As far as issues in the final
version are concerned, there were none to take note of which
was a positive sign. Topics we covered in class about the
datapath and control unit, embedded counters, and the
serializer aided the process in creating our project
tremendously.

CONCLUSIONS

Working on this project allowed us to gain deeper insight
into the complexities and challenges when working with
VGA. Coupled along with our already intricate design, it
made staying on task and scheduling weekly meetings a
priority to stay on track and complete the project on time.
One main take-away point from this project is the need to
find information outside of classroom resources and to learn
it on our own to be able to use it.

To improve our Nexys Racer game, extra features could
have been implemented to improve player experience and
the overall quality of the game. These include different game
modes, sound effects, external peripherals, etc.

REFERENCES

[1] D. Llamocca, “VHDL Coding for FPGAs,” Reconfigurable
Computing Research Laboratory (RECRLab), [Online].
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

[2] S. Larson, “VGA controller (VHDL),” Digi-Key, 17-Mar-2021.
[Online]. https://forum.digikey.com/t/vga-controller-vhdl/12794.

[3] W. Flux, “Hardware Sprites,” Project F - FPGA Development, 04-
Feb-2022. [Online]. https://projectf.io/posts/hardware-sprites

