
Nexys Racer 

Alexander Saikalis, Shane MacFadyen, David Stamatovski, Seeyam Chowdhury 

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

asaikalis@oakland.edu, shmacfadyen@oakland.edu, dstamatovski2@oakland.edu, seeyamchowdhury@oakland.edu  

 

 
Abstract—By utilizing the multitude of available peripherals, 

block RAM, and clock management tiles on the Nexys A7 

development board, a VGA-based racing game was able to be 

designed and implemented. Fundamental digital design 

principles were able to be applied for the project to be built 

from the bottom-up. State machines were used to control the 

flow of the game. Image data was stored in ROM for greater 

image detail and control. The consideration of board memory 

constraints and the ability to meet proper timings relative to 

input clocks were necessary in designing this project.   

I. INTRODUCTION 

The objective of this project was to understand and apply 
the variety of features that the Nexys A7 board has to offer. 
As a development board, multiple peripherals, such as a 
VGA port, directional buttons, and seven segment displays, 
are pre-installed on the board and able to be used as input 
and output interfaces (I/O). Furthermore, by using an FPGA, 
the architecture of a project can be built with full control 
over the system by leveraging the ability to design and 
implement logic blocks from the bottom-up. Finally, the 
Nexys A7 is built with accessible block RAM and clock 
management tiles (e.g., phase-locked loop) that can be used 
in the design. Ultimately, these features allow a high degree 
of flexibility in projects that can be built. 

This project, Nexys Racer, is a VGA-based video game 
that took advantage of the flexibility provided by this FPGA 
board. In the design of the project, several concepts learned 
in class such as block diagram design, state machine design, 
fundamental digital logic design, and use of peripheral I/O 
were applied. Additionally, due to this project’s large design 
relative to assignments and laboratories in the class, a deeper 
understanding of memory instantiation, timing constraints, 
and project organization was necessary.  

The goal of this game is for a player to control a race car 
and reach the finish line without losing all available lives. To 
add difficulty, enemy cars may be present in areas of the 
racetrack that the player must avoid. Furthermore, the player 
is able control their speed which allows for additional control 
of the game. Altogether, this project utilized the following 
peripherals on the board: the VGA port, all directional 
buttons, both RGB LEDs, all LEDs and both seven segment 
displays. Each of these peripherals are intertwined and 
controlled by game logic, part-specific controllers, and user 
input. This report provides the implementation details of how 
the game was designed and able to be accomplished.     

II. METHODOLOGY 

The design of our Nexys Racer project was split into 
many separate modules that could be individually tested. 
Each of these modules is shown in our top block diagram 
(attached as a separate image file). The top diagram connects 
each of the separate components to the outputs and other 
internal components.  

Due to the timing requirements of the 640x480 pixel 
VGA display, many components of the design were run with 
a 25.2 MHz clock obtained by utilizing a PLL provided with 
the system clock of 100 MHz.  

A. Main Control Circuit 

1) Main FSM 

FSM_Main controls a lot of the core functions of the 
design. It takes in data signals from collision detector, the 
edge detectors, distance counter, speed control and from the 
lives components and uses it to control the game state signal. 
The game state signal is the core signal that FSM_Main 
controls and outputs, it determines if the game is being 
played or paused if the player has won or lost, or if they are 
on the main menu. FSM main then sends this signal to the 
other components so then they can change their behavior 
based on the state if necessary. Game state is set based of the 
states in FSM_Main. There are 8 states, each governing what 
the player is interacting with.   

 

 

Fig. 1. Main FSM Diagram 



As shown in the diagram above, state 1 and 2 both 
control the "start" game state with state 1 being the main 
menu and state 2 being a delay state. State 1 uses btn_c_push 
so that the user can decide when to go to state 2. State 2 
takes in input from vs_edge and uses se_vctr for making a 
delay before moving onto state 3. State 3 outputs the game 
state “active” and it is the most important state because it 
signifies that the player is playing the game. Using the 
information from the other components mentioned earlier, 
FSM_Main determines what states are triggered next. State 3 
begins with changing the game state to “active” and e_gen to 
1. State 3 then uses information about collisions to determine 
the collision value with the signals clsn_next and clsn_lr 
from the collision detector. After that, in state 3 the 
lives_zero signal and dist_max signal are used to determine 
if the game has been won, lost, or is still ongoing. We enter 
state 4 if lives_zero ever becomes one before dist_max 
becomes one. If this isn’t the case and dist_max signal 
becomes one before lives_zero does, then the player has won 
leading to state 6. State 8, the state for being paused, only 
triggers when lives_zero is zero and dist_max is zero.  It then 
checks for btn_c_push to be one while the game is in the 
“active” game state. If all 3 of those values are zero, then it 
stays within state 3 as the game continues. State 4 then 
creates a delay like state 2 before the game over, with state 5 
changing the game_state to be “game_over” and then 
delaying to wait for btn_c_push to continue and restart the 
game heading back to state 1. State 6 is very similar to state 
4 and state 2 with how it uses vs_edge and se_vctr as a delay. 
State 7 mirrors state 5 and controls continuing to the 
beginning of the game, waiting on the btn_c_push value to 
be zero. State 8 is an extra state used to control when the 
game is paused. State 8 loops back into state 3 after pausing 
is over, waiting on btn_c_push for either pausing or leaving 
pause. 

2) VS Edge Detector 

     The main FSM requires a signal that sends a ‘1’ during 

the cycle the screen begins to refresh. Since the screen 

begins refreshing during the vertical sync, this input signal 

for the main FSM can be found by using a rising edge 

detector on the VS output VGA signal. 

B. Button Input Management 

All the inputs to the system are handled by the button 

input control system. The only inputs are 5 buttons, the 4 

directional buttons on the d-pad and the 5th one is the center 

d-pad button. These button signals are all passed through a 

debouncer prior to any use of these signals to not cause any 

issues with repeated signals. The four directional d-pad 

buttons are passed into a small fsm that handles when the 

values of the signals that lead to the rest of the components 

are updated by the buttons. This fsm uses the collision as the 

update signal and this signal is from FSM Main. Once the 

collision signal is one it moves to state 2 where it stays until 

btn_en_sig becomes one. When btn_en_sig becomes one it 

moves back to state 1 to start updating again. Btn_en_sig is 

an internal signal that is controlled by a nor gate with all the 

btn signals fed into it. The center button (BTNC) does not 

get handled by this fsm, instead its lead into a rising edge 

detector which then converts the signal into a pulse which is 

now the btn_c_push signal which gets passing into FSM 

Main. 

 

Fig. 2. Button Input Block Diagram 

C. Player/Speed Control 

The player_ctrl component is a register that outputs the 

position of the player based on several inputs. The two main 

inputs that control the lane position of the player are the left 

and right buttons. The other inputs of the player control are 

E, i_rst, and i_vga_frame which are used to perform logic in 

the player control. The player_ctrl also contains a delay 

counter that outputs a signal called “delay” when it reaches 

its max value in order to prevent the player moving 

immediately upon pushing a button. If the i_vga_frame, E, 

and delay signals are “1”, the player_pos can then be altered 

by user input. If the left or right buttons are selected, those 

respective signals will become “1” and move the player. If 

sclr or i_rst becomes “1”, the player_pos output will reset 

back to its original position. There is also a check for the 

bounds on the player's position so that the player does not 

go too far to the left or right.  

The speed_ctrl component is also a register similar to the 

player_ctrl that controls the speed of the player based on 

user input. The inputs that accelerate/decelerate the speed 

are the up and down buttons, respectively. The enable signal 

is the E_gen signal that comes from FSM_Main while the 

synchronous clear is determined by a logical OR operation 

between the collision signal and start signal which both 

come from FSM_Main. The speed has a minimum value of 

zero and the max value is determined by a generic number 

of bits. Each button push (up or down) changes the value of 

the speed and, similar to the player control, there are limits 

so that the speed does not exceed its max or go below zero. 

D. Obstacle Control 

     The obstacle control component controls the generation 

of obstacles as well as all signals related to these obstacles. 

It generates 6 different signals/vectors: shift enable, zero 

speed, obstacle positions, obstacle enables, frontwards 

collision, and left/right collision. The shift enable signal, 

E_sft, asserts a ‘1’ during every clock cycle the obstacles 



shift. The zero_speed signal is set to ‘1’ when the obstacles 

are not moving. The obstacle position array contains the 

current obstacle position for each lane, while the obstacle 

enable vector stores a ‘1’ for every obstacle lane that is 

enabled. The frontwards and left/right collision signals 

contain a ‘1’ if a collision is occurring in that direction. The 

following figure shows the top block diagram for the 

obstacle control unit. 

 

Fig. 3. Obstacle Control Block Diagram 

     The shift controller, obstacle generation controller, and 

collision detector are explained in the following sections. 

Since the obstacles are generated by referencing their 

positions from the bottom of the obstacles and the VGA 

controller requires that the obstacles are referenced from the 

top, the obstacle reference converter is needed to change the 

reference point of the obstacles from the bottom to the top. 

Due to a boundary on the right and left sides of the screen, 

the minimum input player position is not zero. By 

subtracting RL_OFFSET from the player position, the 

player position will then be set up for the collision detector 

logic. RL_OFFSET can be determined from the other 

constant project parameters using the following equation. 
 

 

1) Shift Control 

 

Fig. 4. Shift Control Block Diagram 

     The shift controller design is shown in the above figure. 

This circuit first uses an unsigned divider circuit to perform 

the operation k divided by the speed. K is a constant that can 

be derived using the following equation. 

     Since k is about 3 million, the unsigned divider uses 22 

bit inputs, which causes a substantial output delay. To fix 

this issue, most of the components used in this project are 

run at 25 MHz and the divider output is sent to a register 

that acts as a buffer in order to reduce timing issues. The 

multiplexors are used in order to set the register input to a 

value that will cause no shifting to occur when either speed 

is zero or a collision occurs. The output of a counter is 

compared to the register output. When the counter value 

becomes greater than or equal to the register output, the 

counter is reset and the shift enable signal is set to ‘1’. This 

process is infinitely repeated in order to generate the shift 

enable waveform. 

2) Obstacle Generation Controller 

 

Fig. 5. Obstacle Generation Control Block Diagram 

     The above diagram displays the obstacle generation 

controller design. This design utilizes 3 free-running 

counters in order to pseudo-randomly generate numbers for 

the obstacle lanes, lane generation conflict resolution delay, 

and delay between obstacles. 

     The obstacle lane signal is input into a FSM-enabled 

decoder that creates the signal to instruct which obstacle to 

enable. After an obstacle is enabled, the obstacle position 

counter increases every clock cycle that E_sft is ‘1’ until the 

maximum position is reached. At this point, the enable 

signal will be reset to ‘0’, disabling the obstacle. The 

obstacle conflict signal will be set to ‘1’ when any obstacle 

is being instructed to load when it is already enabled. When 

this occurs, the obs_next signal will be used to tell the FSM 

when it should try to resolve this conflict through generating 

a new obstacle. 

     The obstacle delay will be loaded into a register 

whenever the FSM needs to begin delaying between 

generating obstacles. The resulting stored value is then 

compared with a counter signal in order to determine if the 



correct number of E_sft cycles have occurred, which is 

implemented through an equality comparator. 

3) Obstacle Generation FSM 

 

Fig. 6. Obstacle Generation FSM 

     The above diagram describes the FSM used for the 

obstacle generation control circuit. State 1 is the state where 

all the obstacles have been reset and the user is currently in 

the start menu. All other states return to this state whenever 

the start signal is ‘1’. State 2 is the obstacle generation state. 

After the shift enable signal is set to ‘1’, an obstacle will be 

instructed to load. If there is a conflict, the FSM is sent to 

state 3 for obstacle conflict resolution. Otherwise, is goes to 

state 4 to begin waiting until another obstacle can be 

generated. In state 3, the FSM will attempt to load another 

obstacle whenever the obs_next signal is set to ‘1’. If there 

is no longer a conflict, the FSM leaves state 3 to go to state 

4. In state 4, the FSM increments the delay counter every 

cycle E_sft is ‘1’. When that counter value finally becomes 

equal to the pseudo-randomly generated delay, the FSM 

returns to state 2 in order to generate another obstacle. 

4) Collision Detector 

     The collision detector component operates based on two 

main process statements, the obstacle and player processes, 

and combines the results into the output collision signals 

using logic gates. 

     The obstacle process determines two separate vector 

signals using the obstacle positions and enable signals for 

each lane. The first vector signal, obs_next, contains a bit 

for each lane that will be set to ‘1’ when the obstacle in that 

lane is directly in front of a potential position the player 

could be in. The second vector signal, obs_lr, contains a bit 

for each lane that will be set to ‘1’ when the obstacle in that 

lane is directly to the left or right of a potential position the 

player could be in. 

     The player process first determines the next player 

position using the current player position, the left button 

input, and the right button input. Then, a vector signal, 

player_lane, will be used in order to store a ‘1’ for each lane 

the player will occupy with their next player position. 

     The obs_next, obs_lr, and player_lane signals can now 

be logically combined in order to create the collision output 

signals. By using a bitwise AND operation between each 

obstacle process vector and the player_lane vector and then 

reducing the resulting vector to a single bit using OR gates, 

the signals for collisions in front (clsn_next) and to the sides 

(clsn_lr) of the player can be determined. The resulting 

logic circuit is shown below. 

 

Fig. 7. Collision Determination Logic Circuit 

E. Distance and Time Serializer 

The serializer’s purpose is to output the distance of the 

player’s car, as well as the time the game has been running 

for onto the seven segment LEDs provided by the FPGA. 

The serializer component is also embedded with three 

counters: a one second counter, a distance counter, and a 

time counter. The inputs of this component are E_sft which 

comes from the obstacle control, E_gen which comes from 

FSM_Main, and start which also comes from FSM_Main. 

As suggested by its name, the one second counter is used to 

output a signal of “1” every second. This is done by 

adjusting the generic “COUNT” parameter in the counter 

based on the clock and the cycle time. For example, a 25 

MHz clock at a cycle time of T = 10 ns, the “COUNT” 

should be 25*(10^6).  

The distance counter outputs the distance the player has 

traveled for the duration of the game, holds a maximum 

value of 9999, and is enabled by a logical OR operation 

between E_sft and start. In order to feed in each digit as a 

separate signal to the serializer, the count of the distance 

(which is a std_logic_vector consisting of a generic number 

of bits) is converted to an integer. To break apart this integer 

number into each one of its digits in unsigned decimal, we 

use the modulus operator. The formula used for this is num 

= (x - (x mod y) / y, where x is the decimal number and y 

represents the magnitude of the place the desired digit holds. 

To then update the number and retrieve the next digit, we 

subtract the original number by its magnitude multiplied by 

that particular digit. For example, to retrieve the “1” in 

“1234” is as follows: (1234 - (1234 mod 1000)) / 1000 = 1. 

Now we just need to focus on 234, meaning the subtraction 

operation that must be performed is 1234 - (1000*1) = 234. 



The digits are then converted back to a std_logic_vector.  

The distance counter outputs a signal “dist_max” as a “1” 

when reaching its maximum value.  

The time counter is enabled when the one second 

counter or when the start signal is “1”. The time counter has 

a maximum value of 999 seconds, and its output is also 

broken apart the same way the distance counter’s is in order 

to input it to the serializer. All counters are cleared when the 

start signal is “1”.  

The serializer receives eight inputs (four from the output 

of both the distance and time counter) and outputs the 

results onto the seven segment LEDs of the board. The 

inputs are fed into a MUX that selects for a digit based on 

the state of the FSM built into the serializer. The output of 

the MUX is then input to the hexto7seg decoder that takes 

the 4-bit binary number and converts it to a value in hex 

from 0-9. The seven segment LEDs are turned on by a 3-to-

8 decoder that also uses the same select signal from the 

FSM. The four left-most displays show the distance while 

the three right-most show the time. The fifth seven segment 

display was turned off to keep the two values distinct and 

easier to read.  

F. Lives Control 

The lives controller serves two purposes: first, to keep 

track of the number of lives that the player has available, 

and second, to dynamically control the RGB LEDs that are 

located next to the directional buttons. 

The number of lives is implemented as a decreasing 

counter with an initial value set to three. The enable signal 

of the counter is the collision signal or a synchronous clear 

caused by restarting the game that is passed into the lives 

control entity. This counter provides a terminal count signal 

to the main FSM. When the counter reaches zero, the zero 

lives output is set to a logic high. Additionally, this counter 

keeps track of the number of lives as an internal signal. 

The RGB LEDs display different effects depending on 

the current state of the game and the number of lives that a 

player has remaining. The following table summarizes these 

effects. 

TABLE I. RGB LED EFFECTS 

Game State Lives Left LED Right LED 

START - Gradient Gradient 

ACTIVE 3 Green Green 

ACTIVE 2 OFF Green 

ACTIVE 1 Yellow Yellow 

PAUSE # Lives Pulsing Pulsing  

WIN - Green Green 

GAME OVER 0 Red Red 

G. VGA Controller 

The VGA controller is responsible for setting the output 

signals, which consist of the 12-bit RGB data, the horizontal 

synchronization signal, and the vertical synchronization 

signal to the display monitor. This controller is composed of 

three main aspects: a VGA driver, different screens, and a 

priority encoder. The VGA driver is the core component of 

the controller and provides signals that are crucial to what is 

displayed on the screen. The different screens contain data 

available to be drawn on the screen (e.g., a title screen or the 

player car). Finally, the priority encoder selects which 

screen(s) should be displayed on the display and is primarily 

a function of the current game state. 

1) VGA Driver 

The operating principle of the VGA protocol works 

around two counters that designate a horizontal and vertical 

coordinate (referred as the column and row henceforth) that 

increment on each rising edge of a pixel clock. The value of 

the pixel clock depends on the resolution of the display; 

since this project uses a 640x480 pixel resolution, our pixel 

clock had a frequency of approximately 25.2 MHz. It is 

important to note that this resolution refers only to the active 

region of the display. After the column and row reach their 

respective active maxima, the screen enters a blanking 

period that consists of a front porch, synchronization pulse, 

and a back porch (the length of each depends on the 

resolution). The synchronization signals provide the display 

a signal to indicate that a column or row is finished and to 

retrace to the next position. During the blanking period, the 

column and rows are still incrementing. For our resolution, 

there are a total of 800 columns and 525 rows. Once the 

blanking period is complete, the counters reset to zero. This 

process is a single frame which has a frequency of 60 Hz. 

Thus, our VGA driver produces 60 frames per second with 

16.67 milliseconds per frame. The image below provides a 

visual representation of the process. 

 

Fig. 8. Standard VGA protocol 

The conventional approach to designing a VGA driver 

can be modeled according to the preceding logic. The 

difficulty, however, is that because of the sequential logic 



associated with the column and row counters, there is a 

delay to be accounted for. Furthermore, to implement 

images in the project, hardware sprites stored in ROM are 

used. This implicates an additional delay due to ROM data 

elements being accessible only on the rising edges of a 

clock signal. These delays made drawing and positioning 

the sprites on the screen, specifically with column and row 

values of zero, impossible to accomplish.  

To solve this problem, this project’s VGA driver was 

designed differently. Instead of the blanking period being 

set after the active display, the blanking period was set 

before the display. This meant that instead of the column 

and row starting at zero, they started at -160 and -45, 

respectively. To handle the negative numbers, the column 

and rows are signed values. Other helpful features were 

added to the VGA driver which included signals that: 

indicate the start of each new frame, indicate the start of 

each new line, and indicate when the screen is active. 

Finally, since all the signals were registered, the column and 

row values had an additional register to match timings. 

 

 

Fig. 9. VGA driver block diagram 

2) Screens 

Within the VGA controller, multiple sources of data 

corresponding to specific screen states were available to use 

depending on the state of the game. Several of these screens 

are designed to take up the entire screen and display discrete 

states of the game. These include the start (title) screen, 

pause screen, game over screen, and win screen. These 

preceding screens directly map to their respective states as 

dictated by the main FSM. However, when the game is 

active, there are several screens that are superimposed on 

one another, and where the priority encoder in the VGA 

controller becomes important. One example of how this 

works is the player’s car appearing to be drawn over the 

racetrack pavement. Behind the scenes, both screens are 

active at the same time, with different RGB values at the 

same location. With the priority encoder, only the player car 

is selected to be drawn at the desired location on the screen.  

Each screen shared a similar structure in its composition. 

This composition included screen specific logic (e.g., a 

color gradient being controlled by a timer to display as a 

background), a sprite drawing FSM, a sprite ROM, and a 

register that stored RGB data and a signal indicating if there 

should be anything drawn on the screen (active).  

a) Sprites 

To provide images with detail and the ability to be 

dynamically placed with ease, this project utilized hardware 

sprites. In essence, these are images that have mapped out 

RGB values depending on the indices of the columns and 

rows. Because of the size of many of these images, this 

project stored sprite data within ROMs. To do this, a script 

was written in Python that reads the RGB data of each pixel 

within an image, for any given resolution, and then outputs 

a VHDL file that is structured such that Vivado’s synthesis 

tools can infer it as ROM. Correct inference occurs when 

there is a data array (prefilled with values) that can be 

accessed with specific element (address) values on each 

rising edge of the clock. 

Some of the images, such as those containing text, were 

created with image creation tools, such as Affinity Designer. 

The caveat with creating images this way was that dots per 

linear inch (DPI) and RGB fidelity are both different in 

modern displays when compared to 12-bit color VGA 

display available from the board. There was a loss of quality 

between the image and the final product- particularly if any 

gradients were used. For this reason, objects such as the 

player and enemy cars were drawn with a tool specifically 

meant for pixel art called Piskel. The figures shown below 

provides an example of a logo and the player’s car.  

 

 

Fig. 10. Paused logo made using Affinity Designer 

 

Fig. 11. Player sprite made using Piskel 

b) Sprite ROM 

Each image had a unique ROM file. After inference, 

Vivado placed these files into the board’s various ROM 

blocks using the following depths (measured in bits): 8,192, 



16,384, and 32,768. The depth that the sprite requires is 

dictated by the product of its width and height. This was an 

important detail to consider since Vivado would place a 

sprite with a depth of 8,193 into a ROM with 16,384 which 

not only increases the time to synthesize but also increases 

ROM utilization on the board. The ROM’s addresses 

provide RGB data starting from the top left of the sprite 

down to the bottom right of the sprite. The image below 

shows an example of a ROM block diagram. 

 

Fig. 12. Player car ROM block  

Altogether, the multitude of ROM inferences can be seen 

in Vivado’s synthesis report for the project as shown below.  

  

 

Fig. 13. Vivado block RAM synthesis mapping 

c) Sprite FSM 

While there were multiple ways of drawing the sprite on 

the screen, the most convenient way to do so ended up being 

to utilize a state machine. The sprite FSM mirrors the way 

the VGA driver increments the display column and row 

indices. For the state machine, the sprite column and row 

are analogous to the display coordinates; the only difference 

is that the sprites’ dimensions are smaller. The crucial 

signals provided by the FSM which are used by higher order 

entities are the sprite address and an active signal. 

Importantly, the FSM is easy to use as it requires only 

two key input signals. First, there is a start signal. The logic 

of this signal is set externally within the screen specific 

logic of each screen. Start should be active high when the 

VGA display column and row are equal to where the sprite 

should begin. Second, there is a starting column value 

(which must be signed) that determines the value of the 

column the sprite should begin drawing at.  

The different states are as follows. First, when nothing is 

being drawn, the state remains in IDLE. Second, when the 

start signal becomes active high, the FSM’s state switches to 

START. At this point, the registered values of the sprite row 

and sprite address are set to zero. The state now becomes 

AWAIT which signifies the start of each line in the sprite. As 

a result, the registered sprite column is set to zero. When the 

VGA column is equal to the start column minus two (which 

accounts for delays caused by multiple clocked values), the 

state switches to DRAW. During this state the active signal 

is high and the sprite column index increments. Provided 

that the sprite column and rows are within proper bounds to 

ensure a correct increase of position, the sprite address also 

increments. If the sprite column is not in its final column 

(determined by the sprite’s width), the DRAW state will 

remain persist to draw one line of the sprite. While in this 

state, the active signal is set to logic high. After the final 

column, the state machine checks if sprite row index is in its 

final row (determined by sprite height). If it’s not, the state 

switches to NEXT LINE, increments the sprite row, then 

switches the state back to AWAIT. If it is the final row, the 

sprite is finished drawing and the state is set to DONE 

before switching the state back to IDLE. The state machine 

can be visualized in the image below.  

 

 

Fig. 14. Sprite FSM diagram 

d)   Screen Registers 

The interaction between the screen logic, sprite FSM, and 

sprite ROM allows for each screen to display the sprites 

according to the desired behavior. The screen logic dictates 

when and where the sprite should be drawn, the sprite FSM 

provides addresses to the sprite ROM and supplies an active 

signal, and the sprite ROM provides the RGB data of the 

from the supplied address. For sprites that have motion, an 

additional registered process was included to shift the start 

position at each vga_frame signal to ensure smooth motion. 

Finally, the RGB data and active signals are registered. The 

register also contains priority encoded logic to select which 

data should be stored (if there are multiple data sources). An 

example of a more complex module is shown below. 



 

Fig. 15. Paused screen block diagram 

3) Priority Encoder  

Since all the screens are always active, it was necessary to 

select which screen(s) should be enabled at a given time. To 

do this a combinatorial process exists in the VGA controller 

that properly selects what should be displayed. Conditional 

statements that occur higher up in the conditional chain have 

priority in the display. Many of the basic state screens (e.g., 

win screen) can only occur when the game state is on a 

particular state. Nothing else is displayed at that time. On 

the other hand, the desired display might be multiple screens 

superimposed on one another. For the pause screen, not only 

is the paused dialogue on display, but also the entirety of the 

paused racecars and racetrack in the background. To 

accomplish this, the priority encoder will draw the screens 

on top of one another according to the conditional hierarchy. 

This culminates in the following structure of the VGA 

controller.  

 

Fig. 16. VGA controller block diagram 

III. EXPERIMENTAL SETUP 

First, simulations were run on many of the individual 
components to ensure they operated as expected. For some 
of the components, the constant parameters were scaled 
down to reduce simulation time. The resulting simulation 
testbenches were verified by observing various internal and 
output signals to confirm they responded correctly to the 
chosen input stimuli. Simulations were run on the main 
FSM, player control, speed control, obstacle control, and 
VGA control VHDL files to ensure they worked correctly. 

After combining all the files into a single top file, it was 
very difficult to confirm the circuit was operating correctly 
from viewing the simulation since many of the output signals 
are hard to interpret correctly. Therefore, the top file for our 
project was tested by implementing the design on the board 
and viewing the screen on an external monitor connected by 
VGA. This allowed us to visualize the output of our design 
and ensure proper functionality.  

IV. RESULTS 

The Nexys Racer game performed as intended regarding 
the various game screens, button inputs, and the overall 
gameplay. The testbenches and simulations were created to 
make sure each component functions in the way it was 
intended and showed waveforms that confirmed the 
components were working. As far as issues in the final 
version are concerned, there were none to take note of which 
was a positive sign. Topics we covered in class about the 
datapath and control unit, embedded counters, and the 
serializer aided the process in creating our project 
tremendously. 

CONCLUSIONS 

Working on this project allowed us to gain deeper insight 
into the complexities and challenges when working with 
VGA. Coupled along with our already intricate design, it 
made staying on task and scheduling weekly meetings a 
priority to stay on track and complete the project on time. 
One main take-away point from this project is the need to 
find information outside of classroom resources and to learn 
it on our own to be able to use it.  

To improve our Nexys Racer game, extra features could 
have been implemented to improve player experience and 
the overall quality of the game. These include different game 
modes, sound effects, external peripherals, etc.  
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