
Refrigerator Thermometer

Keep Food at Safe Temperatures

Joseph Asteefan, Rafal Astifo, Nathan Gilmer, Jacob Monks

 Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
jasteefan@oakland.edu, rafalastifo@oakland.edu, nagilmer@oakland.edu, jacobmonks@oakland.edu

Abstract - The purpose of this project is to program an

Artix-A7 FPGA board using VHDL code to function as

a thermometer. This was achieved using processes,

temperature sensor, VGA controller, and seven-

segment displays. The final code was generated to the

FPGA board and demonstrated using an external VGA

display.

I. INTRODUCTION

Everywhere that serves food needs to keep their

inventory at appropriate temperatures. The purpose of

this project is to create a system for a thermometer

that will visually indicate how high or low the

temperature is, based on the reading of a temperature

sensor. The reprogrammable nature of a FPGA

enables exploration for different temperature ranges

for different uses. The applications of this include the

aforementioned refrigeration of food, keeping track

of water heaters and radiators, and industrial uses

such as melting down materials or keeping bacteria in

check.

II. METHODOLOGY

The basic structure of the thermometer is very

simple. A sensor on an FPGA will read the air

temperature of the room and will output a binary

signal that gives enough precision to accurately

determine the Celsius temperature at that time. This

can also be reconfigured to give Fahrenheit

temperatures, but for the sake of this project, the

Celsius scale is used, and it will be applied to

refrigeration. The reading will then be sent to the

system that converts the binary signal into a decimal

number. This is when the Celsius conversion

happens. Once that is finished, the temperature will

be shown on the 7-segment display, and a VGA

display is programmed to show a meter with blue,

cyan, green, orange, and red indicators. The blue

indicator represents a safe temperature for food to be

stored at (below 40℉ or 4℃) [1]. For the sake of

presentation, however, the display will show the blue

block only for temperatures under 28℃. Cyan will be

shown for 28 to 31℃, green for 31 to 34℃, orange

for 34 to 37℃, and red will show for anything greater

than 37℃. Each of these colors are equally divided

into 96 blocks as well. For food storage application,

if the temperature is above 4℃ for any period of

time, the food will need to be measured with an

analog thermometer and moved to another

refrigerator as soon as possible if it is still at a safe

temperature or thrown away if it has spoiled.

A. Temperature Sensor

The Nexys-A7 board is equipped with an

ADT7420 temperature sensor with resolution of 16

bits and precision for up to 0.25 ℃. It reads the

atmospheric temperature and stores the value into

two 8-bit registers, refreshing every 32 milliseconds.

In order to convert the signal to a temperature reading

that humans can understand, it must be bit-shifted to

the right three times, and then multiplied by 0.0625.

The result is a signed floating-point number in

Celsius [2]. If it is desired to convert into Fahrenheit

instead, take the Celsius value, multiply it by 1.8, and

then add 32 [3]. This is a very simple code change

that can be done in the program top file. Professor

Llamocca’s website for VHDL tutorials gives a good

explanation of how the sensor works and how it is

written [4].

B. VGA Controller

The goal is to use the output signal from the

temperature sensor to display certain colors on the

VGA display. To do this, the VGA controller must be

configured to read the temperature from memory, and

the input to the display screen will be a

predetermined signal that represents the needed color.

The way that VGA display control works is defined

by the H-sync and V-sync. These signals tell the

system what information to show on the display,

based on a 12-bit input to the system. Moreover, the

output signals HC and VC tell the system which

pixels on the display need to be used [2]. The range

for the colors on the display should scale to whatever

kind of monitor is used, but for the sake of

mailto:jasteefan@oakland.edu
mailto:rafalastifo@oakland.edu
mailto:nagilmer@oakland.edu
mailto:jacobmonks@oakland.edu

presentation, the display used is a 640x480, 30 Hz

monitor. The basic structure for VGA control was

found from Professor Llamocca’s website [4].

C. Seven-Segment Serializer

The 7-segment display on the Nexys board is

programmed to show the Celsius temperature that the

sensor is reading. The 9 MSB of the temperature are

used. These 9 bits are equivalent to the whole number

of that temperature. This 9-bit value is converted to

an integer then divided by 10 get the tens digit. Then

the modulus operator is used to get the ones digit.

The way the display works is that each digit has an

anode signal that needs to be set to show anything,

and each of the seven segments on an individual digit

has a cathode signal for turning each segment on and

off. However, each digit on the display is connected

to the same cathode signals, which means at any

given time only one number can be shown [2]. In

order to circumvent this, the display needs to be

serialized. This means that it will cycle through the

digits on the display and show the numbers necessary

for those digits at a fast enough speed that the human

eye cannot notice it is even changing. This is done by

using a counter and state machine to set up the

component to operate on a certain frequency. And a

multiplexor is used to determine which digit is being

displayed at any given time. Also, to display the

correct digit, an integer to seven-segment decoder is

used. For the serializer, the code from Professor

Llamocca’s website was sufficient with few changes

necessary [4].

Figure 1: Seven-Segment Serializer

D. Top File and Processes

In the top file, two processes are used to correlate

the temperature readings and VGA control. These

processes execute the data through the use of if-

statements to display the correct colors and blocks on

the VGA display.

D1. Color/Block Placement Process

This process practically decides what color to

display based on the temperature. This also sets the

parameters for each block using the H-count and V-

count variables. Figure 2 shows exactly what

parameters are set.

Color
Temperature

(℃)

Height

(V-count)

Width

(H-count)

Blue T < 28 480 to 384 160 to 480

Cyan 28 < T < 31 384 to 288 160 to 480

Green 31 < T < 34 288 to 192 160 to 480

Orange 34 < T < 37 192 to 96 160 to 480

Red T > 37 96 to 0 160 to 480

Figure 2: Color and Block Parameters

D2. Block Height Process

This process accounts for the gradual increase of

the thermometer. The red and blue blocks do not

gradually increase, as they are just there to show if

the meat is completely freezing or completely

overheating. The middle blocks however, all need to

gradually increase with the temperature like an actual

thermometer. This was done by using some simple

arithmetic. Each block is 96 rows, and each middle

block has a temperature range of 3℃. Now 3℃

divided by 96 rows is equal to 0.03125℃ per row.

This temperature is equivalent to having

“0000000000000100” or 4 bits for 16-bit temperature

value. Essentially, the thermometer needs to increase

or decrease a row every 4 bits of temperature. This

was done by subtracting the temperature reading by

the block’s minimum temperature and then dividing

by 4 bits. Diving by 4 is equivalent to bit shifting

twice to the right in binary. Once this is done, the

block’s height has been found for that temperature.

When setting the v-count parameter for that

temperature reading, the base height of the block was

subtracted by the block’s height to correctly display

the temperature on the thermometer. Note that the

block’s height is subtracted and not added because

the thermometer needs to go up the screen, and this is

done by subtracting for VGA.

Back to the top file as a whole, it consists of all these

components put together, as seen in Figure 3. The

temperature sensor values are fed into the serializer

and VGA control to display the temperature

correctly.

Figure 3: Top File Schematic

III. EXPERIMENTAL SETUP

 VHDL code and Vivado was used to program the

Artix-A7 FPGA board. A reset button, built-in clock,

temperature sensor, VGA port, and seven-segment

display were utilized in this project. A VGA cable

and monitor were also used to actually display the

thermometer. Switches 0 to 4 were used to decide

what temperature to read. Switches 1 to 3 have pre-

set temperatures, SW[1] being low temperature

(below 28℃), SW[2] being medium temperature

(between 31℃ and 34℃), and SW[3] being low

temperature (above 37℃). These are primarily used

for simulation purposes and to verify the project

works. SW[0] turns on the temperature sensor

reading, and SW[4] allows the temperature sensor to

write that data onto the board. These two switches

must both be ON to make the temperature work

correctly.

Figure 4: Hardware Setup

IV. RESULTS

The final outcome of our experiment resulted exactly

as expected with a few minor complications. The data

retrieved from the temperature sensor is sent directly

to the seven-segment and the VGA display, showing

the resulting temperature value. The seven-segment

display demonstrates the temperature results as an

integer value as expected. While the VGA display

demonstrates the step-by-step increase and decrease

in temperature data retrieved from the sensor, to

better resemble a thermometer. The color specified

for each temperature range appeared as expected, but

minor glitches were noticed on the VGA display

when the color blocks were increasing/decreasing in

size. While the color blocks changed in size per

temperature data, the color for the specified range

would glitch and disappear for a brief second and

reappear as it continuously changed. We did not

notice this error when we did the simulation test.

Although we were unable to test the temperature

sensor through the simulation because it is not

possible to do so, we implemented switches to show

the expected outcome of our application. Due to the

restraint of the time length and number of cycles

required to run through every pixel on the VGA

display, only one switch at a time can be tested

through simulation. Each switch was tested, and the

results were as expected. When the switch for the low

value is set to ‘high’, only the blue block is displayed

at that temperature value and the remaining pixels are

set to white. The results for each of the switches

appeared in the same manner in accordance with the

defined ranges for each temperature value. The

simulation results also showed that when the

temperature value reached a different temperature

range, there is a row of white blocks in between the

transition from one color block to the next. This is

better observed in Figure 5, demonstrating the space

between the orange and green block as the VGA is

scanned through from top to bottom.

Figure 5: High Temperature Simulation Results (Green Block)

CONCLUSIONS

Our application for a thermometer was a success.

The temperature ranges selected for our project were

set so high solely for the purpose of seeing the

resulting outcome for each scenario. Those ranges

can be adjusted for future uses to better fit the

requirements of the application. While we did have

some difficulties in showing the simulation results of

our project, the live demonstration of our application

ran successfully. Since our goal was to create a

thermometer, our project can be improved by

showing the integer value of the temperature on the

VGA display rather than the seven-segment display

to make it easier to read. Another possible

improvement could also be showing the color density

for each block increase gradually as the temperature

increases. And possibly, incorporate noise to indicate

overheating or freezing temperature ranges. These

improvements will each benefit our application in

showing a more similar resemblance to a realistic

thermometer.

REFRENCES

[1] “Are You Storing Food Safely?” U.S. Food and Drug

Administration. 9 February 2021.

https://www.fda.gov/consumers/consumer-updates/are-

you-storing-food-safely

[2] Brown, Arthur. “Nexys A7 Reference Manual.” Nexys

A7 Reference Manual - Digilent Reference, Digilent,

reference.digilentinc.com/reference/programmable-

logic/nexys-a7/reference-manual

[3] “Celsius to Fahrenheit (°C to °F).” Metric Conversion,

Wight Hall Ltd., 2020, www.metric-

conversions.org/temperature/celsius-to-fahrenheit.htm.

[4] Llamocca, Daniel. VHDL Coding for FPGAs,

www.secs.oakland.edu/~llamocca/VHDLforFPGAs.ht

ml

