
Spaceship Battle Game

FPGA Video Game

Mathew Plaza, David Smith, Tao Wang

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: dsmith6@oakland.edu, mathewplaza@oakland.edu, taowang@oakland.edu

Abstract​—In this project a Spaceship Battle game
was created in VHDL. The purpose was to create a
fun project while demonstrating the information
learned throughout the course.

INTRODUCTION
The purpose of this project is for the team

members to develop mastery over the FPGA by
designing a game, datapath, and interfacing with
peripheral devices. This game was aimed at being
unique, arcade styles, and simple to learn. The
spaceship battle game is a simple game, where two
players compete to hit the other’s ship. To do this,
they must move their ship to simultaneously aim at
the opponent and dodge the opponent’s shots.

The scope of the project was to implement
this game on the Nexys 4 board with peripheral I/O
hardware. This game required integration of many
topics covered throughout the course, including finite
state machine design and implementation, VHDL
programming, and external hardware interfacing with
PS/2 and VGA. A topic that was utilized in this
project that was learned outside of the course included
the addition of procedures into the Vivado project
library. This project can be applied to the industry of
video games. The Spaceship Battle game shows the
fundamental design of the hardware of a video game.

METHODOLOGY

PS/2 Keyboard Interface
One player’s controls are operated on the

Nexys board buttons,and the other player will use an
external keyboard to make the game more practical
for 2 players. The VHDL code provided on Professor
Llamocca’s website was used as a starting point for
this exercise [1]. Figure 1 outlines the keyboard
interface.

Figure 1: PS2keyboard Block Diagram

The interface has two single-bit inputs which are read
serially to produce an output consisting of 8 data bits,
a parity bit, and a stop bit. However, the FSM of this
circuit underwent a modification from the original
design that was provided. Instead of outputting data
on the F0 key-up code, the circuit outputs data when a
key is pressed or held. When the F0 key-up code is
read in DOUT8, a sclr signal is sent to the register,
making DOUT = 0.

Game Design

The game’s mechanics were broken down
into 2 processes: movement and projectiles. Once a
player presses their respective fire key (spacebar or
A7 button on the Nexys A7), a projectile is created
directly in front of that player’s ship. The projectile
then moves in a straight path vertically until it either
hits the other player or reaches the end of the screen.
When one player hits the other, the winner’s ship will
light up, and the other ship is removed from the game.
Once the resetn button is pushed, a new game will
start. Figure 2 describes the projectile logic. The
player on the Nexys A7 controls has their key pushes
checked first, so their projectiles will leave slightly
before the second player. Through timing simulation
it was determined this timing difference is so small it
will not impact a real game.

Figure 2: FSM_projectile Block Diagram

The second portion of the game design is the
player movement, which is described in Figure 3. In
the first state, the initial positions of the players are
defined. While the game is running, this FSM
continually checks the first player’s inputs followed
by the second player’s inputs, and moves each ship
accordingly. Similar to the projectile, one player is
checked before the other, but the timing was
determined to have no impact on gameplay. A
package of shapes (provided by Anton Toni) was
created to define the shapes of ships and projectiles
[2]. For this game only the two shapes were designed,
however the benefit of this implementation allows for
easy expansion to include other art. The last
component of the game is win detection, which was
implemented by checking the position of the
projectile each clock cycle to see if they match.

Figure 3: FSM_move Block Diagram

VGA Display of Game

To display the game, a VGA screen was
chosen because the Nexys FPGA has a VGA
connector on board, allowing for relatively easy
integration. The VHDL code for the top file and the
VGA driver is a variant of the one created by Anton
Toni [2]. From a high level, this portion works by
cycling through every pixel by row and column and
outputting red, green, and blue information for each
pixel. The projectile and ship shapes are stored for
easy access, requiring an initial position and color as
inputs. Figure 4 shows the modified VGA controller
logic, which cycles through each horizontal and
vertical position.

Figure 4: FSM_VGA Block Diagram

LED Display of Score

To keep track of score, a serializer was used
to output on the integrated 7-segment LED displays.
A single display was used for each player, allowing
for scoring up to 9 points. Each score is kept through
a counter that receives an enable signal when a win is
detected. This code was developed for an earlier lab,
and adapted for two screens. Figure 5 outlines the
adapted serializer. Each time the FSM receives an
enable signal from the counter, it selects the screen
address and data from the mux because data can only
be sent to one screen at a time.

Figure 5: LED Display Implementation

EXPERIMENTAL SETUP

The game was implemented on a Nexys A7
FPGA along with VHDL coding in Vivado 2019.2.

All code was written inside the Vivado program. Each
component/module was designed and simulated
separately from one another to ensure success
between each component. It was possible to see if any
mistakes were made in the code from the timing and
behavioral diagrams. After completing any
troubleshooting needed, we implemented the code in
the overall design and then moved on to the next
component. This allowed the project to be completed
smoothly in increments and in a timely manner.

The code was written for a 1688x1066 VGA
screen, and would need minor changes to work with a
different resolution screen.

RESULTS

The Spaceship Battle game works as
intended, and is considered successful. Figure 6
shows a game in progress. Figure 7 shows a player’s
victory screen. No bugs in the game have been found
through testing, however there may still be some that
are undiscovered.

Figure 6: Spaceship Battle Game in Progress

Figure 7: Player Wins

Figure 8: Score Display Example

Testbenches were used to debug and verify
correct implementation of each part of the game.
Figure 9 shows an example testbench where both
players are pressing keys and moving simultaneously.
Keys[3..0] and DOUT[7..0] represent the player
inputs received by the game. sq_xa and sq_xb show
the horizontal position of each player on the screen.
When the move signal is received from the player
inputs, keys=1 and DOUT=x“6B”, the player position
begins to move until a different input is received. The
“fire” command is then simulated with inputs keys=8
and DOUT=x“29”. When these commands are sent,
the projectile vertical positions, pj_ya and pj_yb,
begin to increase. When one player’s projectile
reaches the other side of the screen and hits the other
ship, win_a goes high to signal this round of the game
is over.

Figure 10 is an example simulation of the
scores output to the LED displays. On the rising edge
of win_a, the counter for score A increments. Counter
B increments on the rising edge of win_b.

Figure 9: Movement Timing Simulation

Figure 10: Scoring Simulation

CONCLUSIONS

Overall, the game creation was a success.
While the project seemed overwhelming at first,
breaking down the game into smaller blocks allowed
us to focus on each section individually before
creating the final product. The VGA interface was the
least familiar to us and required the effort to perfect.
Although the goals were achieved and the game is
functional, there is room for further improvement.
Some potential additions could include a single player
mode, sound effects, a start screen, or more complex
art. Each of these improvements could be constructed
as independent blocks and added to the whole project.

REFERENCES

[1] Llamocca, Daniel. “VHDL Coding for FPGAs.”
VHDL Coding for FPGAs. Web 23 April 2020.
http://www.secs.oakland.edu/~llamocca/VHDLfor
FPGAs.html

[2] Toni, Anton. “VGA”. Github. Web 18 April 2020.
https://github.com/AntonZero/VGA.

