
FPGA Based Weather Sensor Interfacing

Andrew Meesseman, Andrew Galczyk, Adam Marszalek, August Lile
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

adammarszalek@oakland.edu, atgalczyk@oakland.edu, ameesseman@oakland.edu, alile@oakland.edu

Abstract​— ​This project has been created to interface with an
external weather sensor, the BME280, via an FPGA acting as the
host using VHDL to implement the circuit. This external weather
sensor has temperature, humidity, and pressure measuring
capabilities which are collected periodically. Sensor values that
are captured will be reformatted and displayed on an external
Hitachi HD44780 LCD.

I. I​NTRODUCTION
This report will cover the process that was developed for the

experimentation and testing of this project. Vivado was used to
write the VHDL that was used to control the FPGA and create
all external interfaces. Many logic components were used when
designing the weather sensor system such as registers, shift
registers, logical computation units (adders, subtracters,
multipliers), multiplexers, decoders, and several finite state
machines (FSM). Results of the project will also be discussed in
detail to understand future project viability. How these elements
were created, simulated, and tested will be further discussed
below.

II. M​ETHODOLOGY
The system will consist of an interface between the BME280

and FPGA, a circuit to handle the weather data and reformat
according to how it will be displayed on the LCD, and the
interface between the LCD display and FPGA. The FPGA
interfaces with a BME280 sensor in order to receive
temperature, humidity, and pressure data. This data can then be
reformatted accordingly and displayed on the Hitachi HD44780.

 Figure 1. High Level Design

The high level design of the Weather sensor is fairly simple.
The FPGA will communicate with the BME280 weather sensor
via Serial Peripheral Interface (SPI) in order to write to registers
on initialization and to read data from different data registers.
Temperature, pressure, and humidity data that is collected
indefinitely will then be processed and displayed on the LCD, a
Hitachi HD44780.

Figure 2. System Diagram

The system consists of three main portions. There is a circuit
designed to interface with the weather chip over SPI and buffer
in raw temperature, pressure, and humidity data periodically.
This circuit consists of a state machine designed to first retrieve
values that do not change and need to be used for calculations.

1

Following this, raw temperature, pressure, and humidity data
will be collected continuously and get buffered in. The next
circuit is the main circuit, used to convert the raw data into a
format that can be read. The final circuit is designed to interface
with the LCD and display one of four formats: temperature,
pressure, humidity, and welcome screen. The circuit can
multiplex what is being displayed with switches or a timer
circuit and using weather values in registers that are periodically
being updated in the other portions of the circuit.

In the final system it is desired to implement all of the
functionalities provided by the BME280: temperature, pressure,
and humidity readings. The major portion of implementing these
was converting the values that are received from the sensor into
compensated data. All values received from the sensor are output
ADC values. As an example, the subsequent figures show the
circuits that are necessary to convert the raw data into a
compensated value that can be displayed. In order to design the
circuit, the datasheet provides C code functions to convert the
respective collected ADC values into either decimal or Q-format
fixed-point numbers, which is what the system was designed
around. The steps of the code were converted into an
asynchronous circuit.

A. SPI Interface

In order to communicate with the sensor, a standard 4-wire
SPI controller was implemented. The standard 4-wire version
includes outputs of chip select, a clock, and MOSI (master out,
slave in), or SDI. The input of the controller is MISO (master in,
slave out), or SDO. The architecture of this controller includes
two FSM’s: one for controlling the PHY SPI communication and
another as an overlay controlling the flow of what data is to be
sent to the sensor. The latter FSM is detailed below.

Figure 3. High Level SPI FSM Design

When the system boots up, the SPI controller writes to several
registers on the sensor in order to set up some values for the
sensor to abide by. For example, a Power-on Reset (PoR) is
performed, the data polling rate is set to 500ms, and
oversampling and filtering modes are set.

In the next sequence, 32 values that are stored in the sensor’s
non-volatile memory (NVM) are read and stored once. These
values are stored as the trimming parameters and used by
respective conversion circuits to convert the ADC values into
physical data.

The final sequence of this FSM includes a loop that
continuously reads out the ADC values for temperature,
pressure, and humidity from the sensor. This is the most
important data, and the values that are collected by the sensor
periodically to update the weather data.

Figure 4. SPI Interface Architecture

The diagram above shows, from an architectural standpoint,

how the SPI interface was set up. As mentioned earlier, the
interface has two FSM’s. Both of these are in the block labeled
“SPI controller.” The two separate blocks contain registers for
the 32 8-bit registers for the trimming parameters and 8 8-bit
registers for the ADC values. These values are mapped to
different conversion circuits depending on which circuits need
these values as inputs.

B. Conversion Circuits

Section 4.2.3 (rev. 1.6) of the sensor’s datasheet gives a way to
convert the raw ADC values for temperature, pressure, and
humidity into data that can be displayed [1]. It provides example
C functions to implement these conversions, along with an API.
Given that a microcontroller is not being used, it was necessary
to convert the logic in these functions into a series of logic gates
that would essentially perform the same operations and output
the results as the functions would. Given the rather complex
conversions needed for some of the data, these conversion
modules were arguably the biggest part of the circuit. They use
proprietary data types understood to be signed or unsigned 32 or
64 bit integers. For VHDL, these were implemented as logic
vectors of equivalent size. Taking sign into account, temperature

2

may be negative, but pressure and humidity cannot be negative
values.

a. Temperature
The function to convert the temperature receives data in 32-bit

signed format. When this value is converted to decimal, the two
least-significant digits are considered to be the decimal points of
the temperature. For example, a value of ‘5123’ would equal
51.23 degrees Celsius, hence why the circuit converts the binary
output to BCD in order to determine the two fractional digits.
The temperature conversion circuit also creates the value t_fine,
which is used in the pressure and humidity conversion circuits as
well. The humidity and pressure rely on a highly precise
temperature measurement to interpret physical values for those
parameters. The circuits developed to convert temperature are
shown in Figures 5-7.

Figure 5. Temperature Conversion Final Calculation

The image above shows a block diagram of the circuit that

was developed from the temperature conversion function. The
values ‘var1’ and ‘var2’ at the top are not black boxes or values
collected from the sensor, but rather values from different
circuits used in the calculation of temperature. These two circuits
can be seen in Figures 6 and 7, below.

Figure 6. Intermediate Temperature var1 Calculation

Figure 7. Intermediate Temperature var2 Calculation

3

b. Humidity
The function to convert humidity receives data in 32 bit signed

integer format. It then converts the data into a 32bit value
saturated to the range [0, 419430400]. The output value can then
be interpreted by dividing by 1024, shifting the data 10 bits to
the right. This value then corresponds to the value of %RH
(relative humidity) between 0% and 100%, with 3 decimal points
of decimal precision. The circuit that is derived from the
humidity conversion function is shown below in Figure 8.

Figure 8. Humidity Conversion Digital Circuit

c. Pressure

The function to convert pressure receives data in 64bit signed
value format and returns the converted value as a 32bit unsigned
integer in Pascals with one decimal precision. It is more
common to interpret pressure data in hectopascals, standard
atmospheric pressure is 1013.25 hPa. The circuit that was
developed to convert the pressure is shown in Figure 9.

Figure 9. Pressure Conversion Digital Circuit

4

C. LCD Interface
The LCD uses 8 switches as inputs and a register select and

display enable pins. Characters are able to be displayed using the
character codes on page 17 of the LCD datasheet [4]. Upon
startup, the SPI interface retrieves the values and the internal
logic converts the raw data and then cyclically retrieves the raw
sensor data. It is also necessary to clear the LCD as this is
needed to switch between the welcome screen and temperature,
pressure, and humidity data. Each of these messages are hard
coded to be unique, except for the data from the sensor. This
data is input into a 16to1, 8 bit mux which has its select line tied
to a counter through and FSM. This FSM has an internal counter
for waiting to output each character with a given delay. The
output from the mux and the enable can be seen coming out of
the 4 blocks on the left side of Figure 10.

Figure 10. Pressure Conversion Digital Circuit

D. Finite State Machines
The project uses three finite state machines to control event

timing such as reading from the data registers on the sensor and
writing to the LCD. Therefore these are described here as
FSM_LCD which controls the output and FSM_SPI which
controls the input. FSM_LCD also handles the user input from
the switches.

III. E​XPERIMENTAL​ S​ETUP

In order to test and make sure that each component is
functioning correctly, testbenches were created. Now that all the
components have been created, they can be tested on the FPGA.
The version of Nexys board used was the Artix 7 - 100t. In order

to test it, the sensor needed to be safely subjected to varied
“weather” conditions. This can be accomplished at home by
carefully subjecting the board to testing to alter the data output
from the sensor. To alter the temperature is easy enough, one
only needs to place their finger on it to change the temperature
near the device. The pressure could be altered by carefully using
a hair dryer or vacuum cleaner to change the air pressure around
the device. Humidity is the most difficult to test as it could very
easily be disastrous for the device if it were to get wet in the
process. To alter the humidity condition in a home environment
would be done most easily by using a shower to fill a bathroom
with steam. The device could then be brought into the room to
detect a change in the humidity. This test is the most dangerous
of the bunch and is not likely to be performed due to the risk.

IV. R​ESULTS

The results obtained show that the circuit functioned as
intended. However, due to issues with calibration, it was not
possible to obtain accurate results for some data. The
implemented design was able to read data from the sensor for
temperature and pressure. For humidity, because of the narrow
range of values allowed out of the saturation component and the
errors in calibration, the only output value shown was 0.00%
RH. Due to the additional difficulty in testing for different
humidity conditions, it was not feasible to obtain different results
for this measurement within the timeframe the team had to work
on the project.

C​ONCLUSIONS
This project has concluded that it is possible to interface an

external component with the FPGA and export the measured
data to an LCD. Given the complexities of some of the
conversions, some of these functionalities may be better
implemented on a microcontroller with dedicated hardware for
floating or fixed point operations as intended for some of the
conversions as it would yield more accurate results in the end.

One possible way this project could be improved is calibration
of the readout. It was proven that output taken from the sensor
could be converted in such a way that it could be displayed on
the LCD. However, the data does not show accurate results
corresponding to instantaneous weather conditions.

A real challenge faced by the group was operating during the
COVID-19 pandemic. The group made regular contact during
the development period, but the inability to meet and work on
our parts together created a notable latency as well. Members of
the group developed their parts separately, but for testing and
observation, a download and upload cycle was needed. This
created a huge delay and was detrimental to the project overall.

R​EFERENCES
[1] Link to information pertaining to the sensor.
https://www.digikey.com/catalog/en/partgroup/bme280/62478

5

[2] Link to the board that was purchased for the project
https://www.dfrobot.com/product-1606.html?gclid=EAIaIQobC
hMIrL6F4Jui6AIVWv7jBx26BwmrEAkYCiABEgJxAvD_BwE

[4] Link to download the LCD datasheet.
https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

6

