
CAN BUS CONTROLLER 1

CAN Bus Controller

ECE 4710 Final Project

List of Authors (John Brooks, Evan Manser, Emad Eissa)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: johnbrooks@oakland.edu, emanser@oakland.edu, meeissa@oakland.edu

Abstract— The purpose of this project is to design and

implement the bare minimum receive only functionality

for a CAN bus controller. The controller will be designed

in VHDL and provide data from a specific CAN frame on

the CAN bus.

I. INTRODUCTION

 The project will cover designing a CAN bus
controller from scratch in VHDL. The CAN bus controller is
used by microcontrollers to communicate with other
microcontrollers. It is most often used in the automotive
industry for networking local embedded controllers called
ECUs (electronic control units). The microcontrollers in
these ECUs interface to the CAN controller which uses a
CAN transceiver to produce the electrical signals that are
transmitted on the CAN bus.

The reason our group is choosing this project is because
the CAN bus network technology is highly relevant to our
local automotive industry. By building a CAN controller our
group will learn the intimate details of the technology.

This project will require the construction of several finite
state machines to process in the serial data be processed
through a series of stages somewhat like a pipeline. Our
project also will require interfacing with real CAN hardware
including the CAN transceiver and another working CAN
node.

II. METHODOLOGY

 There are several stages that the serial data from the

transceiver needs to go through in order for the contained

data bytes to be processed by the controller.

A. Serial Data Processor (SDP)

 To read the serial data from the CAN bus the
controller must synchronize itself with the bus. There is no
clock signal in CAN, so the rising or falling edge of each new
data bit synchronizes all the nodes on the network. To make
this work a state machine generates a bit sampling clock for
the 500 Kbps data on the bus.
 In the absence of any rising edges the SDP uses a
500 KHz clock signal to sample the incoming bits. When a
rising edge is detected, that 500 KHz pulse generator will get
reset so that it stays synchronized with the data.

 The serial data processor was successfully
implemented. It works correctly in simulation and correctly
samples the bits on the real hardware.

B. Destuffer

 Because the CAN bus uses the data line as the clock,
it is sometimes necessary to synchronize the nodes on the bus
when a long series of dominant or recessive bits are
transmitted without any rising or falling edges that would
trigger the resynchronization. To fix this, extra bits are added
to the serial bit stream called “stuff bits”. The bits are not part
of the data and must be thrown out. They simply serve to
synchronize the bus.
 To account for these stuff bits, the controller will
need a stage which removes the stuff bits from the data stream
and produces the true datastream. The destuffer will also keep
track of the number of bits that it has processed and logically
separate the serial bit stream into registers which contain the
CAN data.

Figure 1. Destuffer Schematic

 The destuffer operates through a shift register
shifting left allowing for the next bit to come in. While the
shift register is receiving data, the FSM will be tracking the
bit stream to insure there are no more than five excessive bits
from the same polarity. For example, then the destuffer gets
data as 111111 then 11111 will appear in the shift register.

CAN BUS CONTROLLER 2

The destuffer designed consisting of a shift (left) register and
embedded counter in FSM (state machine component). the
shift register task to save the data coming from SDP to the
register through shift in port. The FSM controls the enables
of both the shift register and the counter. The state machine
will keep tracking the data and skip or ignore the sixth bit
after five sequential dominant or recessive bits. The FSM will
set the enable low for the shift register to avoid grabbing the
stuffed bit. Thus, the FSM will skip counting the stuffed bit
and only count the actual data. In addition, the destuffer will
send an (EOF) End of Frame signal to the SDP after receiving
the CAN Frame. The counters inside the FSM are accessible
to other components so they can track the actual number of
bits inside the register at any time. the CRC component
mainly will depend on the destuffer counter getting to the 83-
bit value which will signal to the CRC component that it must
begin its calculation.

C. CRC

 As part of the CAN bus protocol there is a Cyclic

Redundancy Check or CRC checksum used for error

detection on the preceding bits. Therefore, as part of the

stages which process the CAN frame data a CRC component

will calculate the CRC per the CAN specification, and, if the

CRC matches the transmitted CRC from the transmitting

node, then a signal coming from the CRC to the SDP will

signal that the CRC is a match so that it can properly ACK

the CAN frame. Now, the CRC calculates the checksum of

the first eighty-three unstuffed bits of the data frame

produced from the destuffer component. In this instance, the

CRC is calculated within about one hundred main clock

cycles finishing well before the eighty-fourth bit of the frame

is generated from the destuffer. Once the CRC component

receives the data the calculation can begin. For the CAN

controller to work, the CRC component must be designed to

execute the correct generator polynomial. The generator-

polynomial is vital to the CRC calculation as it determines

the accuracy of the checksum. As per CAN specification, the

polynomial used in this case is 𝑥15 + 𝑥14+𝑥10 + 𝑥8+𝑥7 +
𝑥4 + 𝑥3 + 1. This polynomial is XORed with the 83-bit

input. In hardware, this operation is carried out through a

series of registers and XOR gates strategically placed before

the registers in the order of the polynomial. Essentially, these

XOR operations perform the division of the input by the

polynomial. The output of this module, or checksum, is the

modulo-2 of this division. Physically speaking the 83-bit

input was concatenated with fifteen bits of zero value. These

are utilized to act as placeholders for the final 15-bit output.

The 15-bit output is taken from the inputs of the fifteen

registers that cycled through the ninety-eight bits.

 The result is then to be compared with the generated

CRC from the transceiver to ensure that the message is valid.

This can be done in hardware by a comparator which would

send the ACK back to the serial data processor as shown in

Fig. 1. Furthermore, this ACK would enable the Data

Extractor component.

 The CRC functions perfectly when simulated

behaviorally by itself and with the Serial Data Processor and

destuffer. It executes the calculation when specified and

performs the operation in a timely manner. The comparison

of the generated CRC from the Serial Data Processor and the

calculated checksum from the CRC component was not

implemented.

D. Data Extractor

 Once the CRC has been validated and the CAN

frame data received the Data Extractor will compare the

arbitration ID of the CAN frame to the set filter and if it is a

match, it will set a register which stores the data byte of

interest. The extractor will then display the byte of data on a

seven-segment display. In hardware the Data Extractor is a

simple thirty-two bit register which passes through the first

thirty-two bits of the 64-bit data field in the CAN frame. To

enable the register requires two stages. First, the eleven-bit

Arbitration ID would have to be ANDed with a hardwired

value to generate a single bit indicating that the Arbitration

ID matches. Second, this bit would have to be ANDed with

the ACK bit from the calculated CRC matching the frame

generated CRC.

 The output of the Data Extractor register is directly

connected to the component controlling the seven-segment

display. This component is a simple serializer. Specifically,

the one that was designed in Lab 3 of this course is

compatible completely with this CAN controller.

 The project member that was assigned this

component was unable to continue the course preventing this

component from being designed. However, the serializer was

implemented and could generate the first thirty-two bits of

the data field. Therefore, apart from confirming the CRC, the

output simulated as anticipated.

E. Transmitting Node

 In order to have data to process we connected a

transmitting node which is already a finished product. This

transmitting node gives us the ability to send CAN frames to

our microcontroller and change the data byte value.

Figure 2. CAN Controller Circuit Diagram

III. RESULTS AND DISCUSSION

 The CAN controller was completely successful in

behavioral simulation. Getting the design to work on the real

CAN BUS CONTROLLER 3

hardware was a slightly different matter which involved

using the LEDs as debugging tools and a healthy amount of

trial and error.

Figure 3

 Part of the difficulties in getting the design to work on

the hardware had to do with the current shelter-in-place order

due to the COVID-19 pandemic. The team member with the

CAN transceivers and CAN transmit hardware also does not

have a soldering iron, because it is locked in the robotics

laboratory at Oakland University. Because of that, the

hardware was hastily assembled with jumper wires and a

breadboard. The connections are depicted in Figure 4.

 The transceiver is wired to a 5V power supply for

power and the output of the transceiver is run through a

voltage divider (2/3rds) to get the input voltage below 3 volts

so that it is safe for the Nexys A7 to read.

Figure 4. Electrical Schematic

 Generating the CAN signals that we are reading is

an Intrepid Control Systems’ neoVI FIRE2 and Vehicle Spy

3 software. We can control the CAN bus message

transmission rate and databytes with the software. This

device is pictured in Fig. 5.

Figure 5. Transmitting Node

In order to make sure that the transceiver is functioning

correctly, a PC based oscilloscope was used as shown in Fig.

6. The oscilloscope used was the PicoScope 4227, used with

the PicoScope6 software.

Figure 6. PicoScope

 To verify that the CAN controller is working correctly

a test frame was transmitted from the Vehicle Spy 3 software.

The first byte cycled a single bit through each bit position and

the remaining bytes spelled 0xCOFFEE as shown in Fig. 7

CAN BUS CONTROLLER 4

Figure 6. Seven-Segment Output Display

 The hardware implemented design is able to decode

the transmitted CAN frame on the seven-segment display. To

test the CRC in simulation we fed a simulated CAN bus frame

into the top level which performed all operations of the

design (including CRC). We then compared the generated

CRC value against the known good value that we saw

decoded on the PicoScope. The behavioral simulation

showed the correct CRC being calculated; however, it did not

produce the correct value when run on the real FPGA.

Unfortunately, we ran out of time to debug these errors before

the end date of the project. So, the current design does not

perform the check for CRC during our demonstration video.

The remaining components were working correctly, as can be

seen in the demonstration.

