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Abstract— The purpose of this project is to design and 

implement the bare minimum receive only functionality 

for a CAN bus controller. The controller will be designed 

in VHDL and provide data from a specific CAN frame on 

the CAN bus. 

I. INTRODUCTION 

 The project will cover designing a CAN bus 
controller from scratch in VHDL. The CAN bus controller is 
used by microcontrollers to communicate with other 
microcontrollers. It is most often used in the automotive 
industry for networking local embedded controllers called 
ECUs (electronic control units). The microcontrollers in 
these ECUs interface to the CAN controller which uses a 
CAN transceiver to produce the electrical signals that are 
transmitted on the CAN bus.  

The reason our group is choosing this project is because 
the CAN bus network technology is highly relevant to our 
local automotive industry. By building a CAN controller our 
group will learn the intimate details of the technology.  

This project will require the construction of several finite 
state machines to process in the serial data be processed 
through a series of stages somewhat like a pipeline. Our 
project also will require interfacing with real CAN hardware 
including the CAN transceiver and another working CAN 
node.  

II. METHODOLOGY 

 There are several stages that the serial data from the 

transceiver needs to go through in order for the contained 

data bytes to be processed by the controller. 

A. Serial Data Processor (SDP) 

 To read the serial data from the CAN bus the 
controller must synchronize itself with the bus. There is no 
clock signal in CAN, so the rising or falling edge of each new 
data bit synchronizes all the nodes on the network. To make 
this work a state machine generates a bit sampling clock for 
the 500 Kbps data on the bus.  
 In the absence of any rising edges the SDP uses a 
500 KHz clock signal to sample the incoming bits. When a 
rising edge is detected, that 500 KHz pulse generator will get 
reset so that it stays synchronized with the data.  

 The serial data processor was successfully 
implemented. It works correctly in simulation and correctly 
samples the bits on the real hardware. 

 

B. Destuffer 

 Because the CAN bus uses the data line as the clock, 
it is sometimes necessary to synchronize the nodes on the bus 
when a long series of dominant or recessive bits are 
transmitted without any rising or falling edges that would 
trigger the resynchronization. To fix this, extra bits are added 
to the serial bit stream called “stuff bits”. The bits are not part 
of the data and must be thrown out. They simply serve to 
synchronize the bus. 
 To account for these stuff bits, the controller will 
need a stage which removes the stuff bits from the data stream 
and produces the true datastream. The destuffer will also keep 
track of the number of bits that it has processed and logically 
separate the serial bit stream into registers which contain the 
CAN data. 

 
Figure 1. Destuffer Schematic 

 
 The destuffer operates through a shift register 
shifting left allowing for the next bit to come in. While the 
shift register is receiving data, the FSM will be tracking the 
bit stream to insure there are no more than five excessive bits 
from the same polarity. For example, then the destuffer gets 
data as 111111 then 11111 will appear in the shift register. 
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The destuffer designed consisting of a shift (left) register and 
embedded counter in FSM (state machine component). the 
shift register task to save the data coming from SDP to the 
register through shift in port. The FSM controls the enables 
of both the shift register and the counter. The state machine 
will keep tracking the data and skip or ignore the sixth bit 
after five sequential dominant or recessive bits. The FSM will 
set the enable low for the shift register to avoid grabbing the 
stuffed bit. Thus, the FSM will skip counting the stuffed bit 
and only count the actual data. In addition, the destuffer will 
send an (EOF) End of Frame signal to the SDP after receiving 
the CAN Frame. The counters inside the FSM are accessible 
to other components so they can track the actual number of 
bits inside the register at any time. the CRC component 
mainly will depend on the destuffer counter getting to the 83-
bit value which will signal to the CRC component that it must 
begin its calculation. 

C. CRC 

 As part of the CAN bus protocol there is a Cyclic 

Redundancy Check or CRC checksum used for error 

detection on the preceding bits. Therefore, as part of the 

stages which process the CAN frame data a CRC component 

will calculate the CRC per the CAN specification, and, if the 

CRC matches the transmitted CRC from the transmitting 

node, then a signal coming from the CRC to the SDP will 

signal that the CRC is a match so that it can properly ACK 

the CAN frame. Now, the CRC calculates the checksum of 

the first eighty-three unstuffed bits of the data frame 

produced from the destuffer component. In this instance, the 

CRC is calculated within about one hundred main clock 

cycles finishing well before the eighty-fourth bit of the frame 

is generated from the destuffer. Once the CRC component 

receives the data the calculation can begin. For the CAN 

controller to work, the CRC component must be designed to 

execute the correct generator polynomial. The generator-

polynomial is vital to the CRC calculation as it determines 

the accuracy of the checksum. As per CAN specification, the 

polynomial used in this case is 𝑥15 + 𝑥14+𝑥10 + 𝑥8+𝑥7 +
𝑥4 + 𝑥3 + 1. This polynomial is XORed with the 83-bit 

input. In hardware, this operation is carried out through a 

series of registers and XOR gates strategically placed before 

the registers in the order of the polynomial. Essentially, these 

XOR operations perform the division of the input by the 

polynomial. The output of this module, or checksum, is the 

modulo-2 of this division. Physically speaking the 83-bit 

input was concatenated with fifteen bits of zero value. These 

are utilized to act as placeholders for the final 15-bit output. 

The 15-bit output is taken from the inputs of the fifteen 

registers that cycled through the ninety-eight bits. 

 The result is then to be compared with the generated 

CRC from the transceiver to ensure that the message is valid. 

This can be done in hardware by a comparator which would 

send the ACK back to the serial data processor as shown in 

Fig. 1. Furthermore, this ACK would enable the Data 

Extractor component. 

 The CRC functions perfectly when simulated 

behaviorally by itself and with the Serial Data Processor and 

destuffer. It executes the calculation when specified and 

performs the operation in a timely manner. The comparison 

of the generated CRC from the Serial Data Processor and the 

calculated checksum from the CRC component was not 

implemented.  

D. Data Extractor 

  Once the CRC has been validated and the CAN 

frame data received the Data Extractor will compare the 

arbitration ID of the CAN frame to the set filter and if it is a 

match, it will set a register which stores the data byte of 

interest. The extractor will then display the byte of data on a 

seven-segment display. In hardware the Data Extractor is a 

simple thirty-two bit register which passes through the first 

thirty-two bits of the 64-bit data field in the CAN frame. To 

enable the register requires two stages. First, the eleven-bit 

Arbitration ID would have to be ANDed with a hardwired 

value to generate a single bit indicating that the Arbitration 

ID matches. Second, this bit would have to be ANDed with 

the ACK bit from the calculated CRC matching the frame 

generated CRC.  

 The output of the Data Extractor register is directly 

connected to the component controlling the seven-segment 

display. This component is a simple serializer. Specifically, 

the one that was designed in Lab 3 of this course is 

compatible completely with this CAN controller. 

 The project member that was assigned this 

component was unable to continue the course preventing this 

component from being designed. However, the serializer was 

implemented and could generate the first thirty-two bits of 

the data field. Therefore, apart from confirming the CRC, the 

output simulated as anticipated. 

E. Transmitting Node 

  In order to have data to process we connected a 

transmitting node which is already a finished product. This 

transmitting node gives us the ability to send CAN frames to 

our microcontroller and change the data byte value. 

 

 
Figure 2. CAN Controller Circuit Diagram 

 

III. RESULTS AND DISCUSSION 

 

 The CAN controller was completely successful in 

behavioral simulation. Getting the design to work on the real 
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hardware was a slightly different matter which involved 

using the LEDs as debugging tools and a healthy amount of 

trial and error.  

Figure 3 

 

 Part of the difficulties in getting the design to work on 

the hardware had to do with the current shelter-in-place order 

due to the COVID-19 pandemic. The team member with the 

CAN transceivers and CAN transmit hardware also does not 

have a soldering iron, because it is locked in the robotics 

laboratory at Oakland University. Because of that, the 

hardware was hastily assembled with jumper wires and a 

breadboard. The connections are depicted in Figure 4. 

 

 The transceiver is wired to a 5V power supply for 

power and the output of the transceiver is run through a 

voltage divider (2/3rds) to get the input voltage below 3 volts 

so that it is safe for the Nexys A7 to read.  

 

 
Figure 4. Electrical Schematic  

 

 Generating the CAN signals that we are reading is 

an Intrepid Control Systems’ neoVI FIRE2 and Vehicle Spy 

3 software. We can control the CAN bus message 

transmission rate and databytes with the software. This 

device is pictured in Fig. 5. 

 

 
Figure 5. Transmitting Node 

 

In order to make sure that the transceiver is functioning 

correctly, a PC based oscilloscope was used as shown in Fig. 

6. The oscilloscope used was the PicoScope 4227, used with 

the PicoScope6 software. 

 

 
Figure 6. PicoScope 

 

 To verify that the CAN controller is working correctly 

a test frame was transmitted from the Vehicle Spy 3 software. 

The first byte cycled a single bit through each bit position and 

the remaining bytes spelled 0xCOFFEE as shown in Fig. 7 
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Figure 6. Seven-Segment Output Display 

 

 The hardware implemented design is able to decode 

the transmitted CAN frame on the seven-segment display. To 

test the CRC in simulation we fed a simulated CAN bus frame 

into the top level which performed all operations of the 

design (including CRC). We then compared the generated 

CRC value against the known good value that we saw 

decoded on the PicoScope. The behavioral simulation 

showed the correct CRC being calculated; however, it did not 

produce the correct value when run on the real FPGA. 

Unfortunately, we ran out of time to debug these errors before 

the end date of the project. So, the current design does not 

perform the check for CRC during our demonstration video. 

The remaining components were working correctly, as can be 

seen in the demonstration.  


