
 Signed Fixed-Point Calculator
Cory Bledsoe

Rachel Pilarowski

Melvin Pulianthuruthil

Introduction
● Calculators are small complex devices

● Globally used everyday

● Simple arithmetic/complex calculations

● Several components

● Fixed point calculations

○ FX Format: [20 8]

Components
● NEXYS Board

● Keypad

● BCD/Binary

Conversions

● 4 circuits (addition,

subtraction,

multiplication,

division)

● Seven Segment

Displays

● Switches

Keypad
● PMOD port JC:

○ Pin 1-4 = C1-C4

○ Pin 7-10 = R1-R4

● Keep one column bit low and rest high.

Row bits are kept high. Then scan each

row for a low bit within that column.

● One column bit and one row bit low = a

button press.

○ Value displayed to the 7-segment

● If no row bits are low, move to the next

column. Repeat process

Keypad

BCD to Binary
● Sign Decoder

○ Press B => ‘1’

○ Press A => ‘0’

● Integer Decoder

○ 1

th

 place digit BCD => 11 bits

○ 10

th

 place digit BCD => 11 bits

○ 100

th

 place digit BCD => 11 bits

○ Add the 3 results

● Fraction Decoder

○ Like LUTs

○ Fraction_BCD(7 downto 4)

chooses which Mux

○ Then select the value from the

list

● Result = Sign & Integer & Fraction

Addition/Subtraction
● Uses simple full adder

○ Cin is selected to be ‘0’ for addition and

‘1’ for subtraction

● Full adder expects inputs in 2’s

Complement

● SM to 2C

○ If sign is ‘0’, output does not change

○ If sign is ‘1’, append a ‘0’ to the MSB and

compute 2C

● 2C to SM

○ If MSB is ‘0’, output does not change

○ If MSB is ‘1’, convert and append ‘1’ to

MSB

Multiplication
● Inputs are in Sign and

Magnitude

○ Just need an XOR gate for sign

● Append 0’s to MSB of second

input

● Use typical Iterative Multiplier

○ If b0 = ‘1’, P = P + A

○ Shift A left

○ Shift B right

● Answer has FX Format [38 16]

○ Truncate bottom 8 bits for 8

decimal places and top bits for 11

integer bits

Division
● Inputs are in Sign and

Magnitude

○ Just need an XOR gate for sign

● Append 8 bits to LSB

○ For 8 bit precision

● Use normal Iterative Divider

○ Bits of A are compared to the

divisor

○ If higher or equal to B, then B

is subtracted

● Last 8 bits of Q are

truncated

Binary to BCD
● 20 bit Result => 6 BCDs

● Result(19) = sign

● Result(18 downto 8)

○ Double Dabble

■ Left Shift

■ Add 3 if BCD > 4

○ Get 3 BCD values

● Result(7 downto 0)

○ Multiply by 10

○ Product(11 downto 8) = Fraction 1 BCD

○ Multiply 10 by Product(7 downto 0)

○ newProduct(11 downto 8) = Fraction 2 BCD

Display Result
● Pulse generator outputs ‘1’ every 1ms

● FSM: 7 states to enable each 7-segments

○ E = ‘1’ every 1ms

○ s <= “000” enables first 7-segment

○ Last 7-segment not used

● 1st 7-segment for sign

○ Positive Number => no display

○ Negative Number => display “-”

● 2nd - 4th 7-segment for integer

● 5th 7-segment for decimal point

● 6th and 7th for fraction

Final Implementation
● Turn on switches to grab Keypad value

○ Switches 1 for sign of Number A

○ Switches 2 for 100th digit of Number A

○ Switches 3 for 10th digit of Number A

○ Switches 4 for 1th digit of Number A

○ Switches 5 for 10th fraction of Number A

○ Switches 6 for 100th fraction of Number A

○ Switches 7-12 for Number B

● BCD to Binary

● Choose arithmetic using Switch 15 and 16

○ “00” for add

○ “01” for sub

○ “10” for multiply

○ “11” for divide

● Arithmetic

● Binary to BCD

● Display Result

Improvements
● Get digits without using switches

● Display Number A and B after user inputs

● Use LCD to display

○ Bigger range for the fixed point format

● A faster and efficient way to convert BCD fractions

○ Not a good method if it was a bigger fraction (Ex: 0.9999)

Thank You

