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Abstract—The purpose of this design project was to implement         
a signed fixed-point calculator on a FPGA. This calculator is          
able to add, subtract, multiply and divide two sign and          
magnitude inputs which come from a keypad. The fixed-point         
format for this calculator is [20 8]. It can handle numbers in            
the range of [-999.99, +999.99]. The user can select which          
operation to do by using the on-board switches and buttons.          
After the calculation is completed, the result is shown on          
7-segment displays.  

I. INTRODUCTION 
Calculators are some of the most common tools in         

every occupation. They are fast and efficient, making them         
a very powerful tool in simple arithmetic applications. In         
this project, a signed fixed-point calculator was designed        
and created using a Nexys A7 FPGA Trainer board and          
VHDL programming language. 

The purpose of this project was to gain a higher          
appreciation for the computing behind a calculator. This        
project will also serve to strengthen VHDL concepts,        
reinforce troubleshooting skills and explore the concepts of        
fixed-point arithmetic. Fixed-point arithmetic is useful      
because it allows for both positive and negative        
representation and includes fractional precision.  

This calculator will work by taking a sign and         
magnitude fixed-point number with the format [20 8] from a          
keypad input and go through the basic arithmetic operations:         
addition, subtraction, multiplication and division. The user       
will use switches in order to decide which operation they          
wish to complete. After the computation is completed, the         
result will be shown on the on-board 7-segment displays. 

II. METHODOLOGY 

There are a few main components that this        
calculator will include. The user interface will be a keypad          
in order to enter the desired numbers and their sign. This           
calculator can only handle numbers in the range of [-999.99,          
999.99]. Because this calculator is using a keypad, the input          
will need to be converted from BCD to binary. This is a            
basic calculator which can compute basic arithmetic.       
Therefore, 4 circuits are created to handle each of the          
operations: addition, subtraction, multiplication and     

division. A multiplexor is used to determine which of the 4           
arithmetic will be computed. The user can use the switches          
on-board to control the output of the multiplexor. Lastly, the          
result will need to be converted from binary to BCD, and           
then display the result on the on-board 7-segment displays.         
A high-level block diagram is shown below in Figure 1.          
More detailed explanations of each component is described        
in the sections below. 

 

 
Figure 1: High-Level Block Diagram of the Calculator 

 

A.  Keypad and User Interface 
The goal is to allow the user to input the digits he            

or she wants to calculate by using the Arduino 4x4 keypad.           
There are 8 pins for the keypad, where the first four pins are             
connected to the four rows, and the last four pins are           
connected to the four columns. These 8 pins are connected          
to the Nexys A7 JC PMOD port. The JC PMOD port has 12             
pins. Pins 1-4 and 7-10 are used for logic signals, pins 5 &             
11 are GND, and pins 6 & 12 are VCC which can provide             
3.3V. For this project, only the logic signal pins are used           
since power is supplied to the board using the USB port. In            
Figure 2, the row 1-4 pins are connected to the PMOD pins            
7 -10, and the column 1-4 pins are connected to the PMOD            
pins 1-4.  
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Figure 2: Keypad Connection 

 
The block diagram, in Figure 3, shows how the         

program works. The decoder keeps the logic of one column          
pin low and the rest high, and then checks each row in the             
column for a logic low denoting a button press. If it does            
find a logic low, it determines the corresponding value and          
displays it to the 7-segment. If it doesn’t find a logic low on             
any row, then the program keeps the next column low, and           
repeats this process until it matches a logic low on a column            
and a row. The Figure 4 shows the number displayed on the            
7-segment when a button is pressed on the keypad [1]. 

 

 
Figure 3: Keypad Block Diagram 

 

 
Figure 4: Keypad Demo 

 

B.  Addition 
For this project, a simple full adder is used for both           

the addition and subtraction. However, the full adder        
expects integers in two’s complement and the output of the          

BCD to binary is in sign and magnitude. Therefore, a          
conversion between two’s complement and     
sign-and-magnitude is needed. Once the result is obtained,        
the result needs to be converted back to the sign and           
magnitude format. Figure 5, shown below, is a block         
diagram for the addition and subtraction circuits. It should         
be noted that since this is addition, the “Cin” for the full            
adder is ‘0’. 

 

 
Figure 5: Block Diagram for Addition and Subtraction 

 
The sign and magnitude to two’s complement       

converter works by looking at the sign bit of the input. If it             
is a ‘0’, or positive, it passes through the input without           
changing it. However, if it is a ‘1’, or negative, it appends a             
‘0’ to the magnitude of the input and converts it into two’s            
complement. The two’s complement to sign and magnitude        
converter works in a similar way. If the number is positive,           
the input is not changed. However, if it is negative, the           
input is converted [2].  

C.  Subtraction 
The method of subtraction for this calculator works        

very similarly to the addition. The same circuit which is          
shown above in Figure 5 is used for the subtraction. The two            
inputs are sign and magnitude and it needs to be converted           
to two’s complement so that they can be fed to the full            
adder. However, Cin is set to ‘1’ so that the inputs are            
subtracted instead of added together. The result of the full          
adder is then converted back to sign and magnitude in order           
to be displayed on the 7-segment displays [2].  

D.  Multiplication 
Fixed point multiplication works the same way as        

the binary multiplication by using the two’s complement        
system for the multiplications performed. The precision for        
the multiplication must be taken into account because of         
having to drop bits as the arithmetic operation for the          
product can be much longer than the bit lengths from the           
inputs. When multiplying two's complement numbers, there       



must be a sign extension to the operands to meet the number            
of digits for the multiplication that has been performed.  

For this circuit, the input is two fixed point         
numbers in sign-and-magnitude. The sign bit is sent to an          
XOR gate to determine the sign of the number. After this,           
zero’s are appended to the MSB of the second input,          
increasing the number of bits from 19 to 38. After this has            
been completed, a typical Iterative Multiplier circuit is used.         
The block diagram and state machine for this circuit is          
shown below in Figures 6 and 7. These circuits come from           
Dr. Llamocca’s website [2]. 

 

  
Figure 6: Block Diagram for Iterative Multiplier 

 

 
Figure 7: State Machine for Iterative Multiplier 

 
This circuit works by looking at the LSB of the          

second input, B. If it is ‘1’, then it is added to the             
cumulative sum. After each iteration, both inputs are        
shifted. After all bits have been shifted, the cumulative sum          
is the answer. As discussed before, the answer will have 38           
bits whereas the calculator can only handle 19 bits.         
Therefore, the MSBs are cutoff as well as the LSBs of the            
result. After this, the result is sent to the binary to BCD            
converter and displayed on the 7-segment displays. 

E.  Division 
Fixed point division works like a typical binary        

division with a few extra steps. This calculator’s inputs also          

are in sign and magnitude, therefore, the inputs do not need           
to be converted to unsigned binary. Also, since the format          
of this fixed-point calculator is constant, alignment is        
already completed. However, in order to get some precision         
for the fractional part of the number, bits need to be added            
to the end of the dividend. For this calculator, 8 bits are            
added to the LSB of the dividend since the fixed-point          
format is [19 8], not including the sign. After these few           
steps have been completed, the typical iterative divider        
circuit can be used to complete the actual division. The          
iterative divider that was used for this project comes from          
Dr. Llamocca’s website [2]. The block diagram and state         
machine of the iterative divider is shown below in Figures 8           
and 9. 

 
Figure 8: Iterative Divider Block Diagram 

 

 
Figure 9: Iterative Divider FSM 

 
This circuit is based off of the hand-division        

method. Bits of A are compared one by one to the divisor.            
If the result is greater or equal to B, then B is subtracted             
from it. On each iteration, one bit of Q is determined. After            
the division is completed, the last 8 bits of Q are truncated            
and sent to the Binary to BCD converter to be displayed on            
the 7-segment displays. 



F..  BCD to Binary and Binary to BCD Converters 

When a key is pressed, the keypad decoder will         
output a corresponding BCD number. In order to do         
arithmetics for the calculator, these BCD numbers need to         
be converted to a binary number. There are three main          
decoders for this converter: Sign Decoder, Integer Decoder        
and Fraction Decoder. Sign decoder will output a one bit          
binary number which is either a ‘1’ if B was pressed or a ‘0’              
if A was pressed.The integer decoder has 3 components         
which are used to obtain a 11 bit binary number          
representing the 3 digit integer: 1th Decoder, 10th Decoder         
and 100th Decoder. The 1th will receive a 4 bit BCD value            
between 0 and 9, and it outputs an 11 bit value between 0             
and 9. Similarly, the 10th decoder will output an 11 bit value            
from 0 and 90, but the numbers go up by 10. Lastly, the             
100th decoder will output an 11 bit value from 0 and 900,            
but the numbers go up by 100. Then, these three binary           
numbers are added together to obtain the final integer value          
in the binary number. The fractional decoder is similar to an           
LUT, and it contains 10 decoders. The two fractional BCD          
numbers are concatenated together, and this 8 bit number is          
used as the input. Then, by looking at the upper four bit of             
the input, the program selects a decoder that will give the 8            
bit binary number of the fractions. The first decoder holds          
values from 0.00 to 0.09, the last decoder holds values from           
0.90 to 0.99. The remaining decoders in between hold the          
remaining binary values of the fractions. Once the three         
numbers are processed, they are concatenated together to        
form a 20 bit binary number which will be used for the            
arithmetic operations. Bit 19 of the output is the sign of the            
number, bits 18 to 8 are the integer, and bits 7 to 0 are the               
fraction. Figure 10 is the block diagram of the BCD to           
binary converter circuit. 

 

 
Figure 10: BCD to Binary Converter Block Diagram 

 
Once the arithmetic operation outputs a binary       

result, it needs to be converted back to BCD number to           
display the result on the 7-segment. The BCD of the sign is            

determined by taking bit 19 of the result. A double method           
is used to extract the three BCD numbers for the integer.           
Since there are 11 bits, four BCD numbers are used, and           
they are all initialized with 0s. But, the integer number          
range of the calculator doesn’t go over 999. Therefore, only          
three BCDs are required. The process starts by left shifting          
both the BCDs and the binary number, and the MSB of the            
binary number is shifted into the LSB of the first BCD.           
Then, the program checks whether a BCD value is greater          
than 4. If it is, the particular BCD is added with 3 and it gets               
updated. If not, the numbers are left shifted again. This          
process continues until all the binary number bits are shifted          
into the BCDs. Next, the fractional BCD numbers need to          
be extracted. The concatenated 8 bit fractional binary        
number is multiplied by 10. The upper 4 four bits will be            
0’s, bits from 11 to 8 is the BCD value of the first decimal              
place number. The bits from 7 to 0 are, then, multiplied by            
10. Bits 11 to 8 of the new product is the BCD value of the               
second decimal place number. This process can be        
continued if there were more fractional numbers. Figure 11         
is a block of the fractional binary to BCD converter. The           
converter will output the six BCD numbers which will be          
displayed on the 7-segment.  

 
Figure 11: Fractional BCD to Binary converter 



G.  Seven Segment Displays 

In order to display the final result, seven        
7-segments are used. The program uses a similar technique         
that Dr. Llamocca has implemented in the program called         
Serializer: Four 7-segment displays. Only one 7-segment       
on-board can be enabled at a time. Therefore, a very small           
delay needs to be implemented to enable each 7-segment.         
The FSM in Figure 12 is programmed to enable each          
7-segment on-board at a time. A pulse generator is used to           
output a ‘1’ every 1 ms, which is used to transition the states             
in the FSM. Even if there is a 1 ms delay to enable each              
7-segment, the human eyes would not perceive it. Since         
there are only seven states in the FSM, only the first seven            
7-segments are enabled. The first 7-segment displays the        
sign of the result. If the number is negative, a minus is            
displayed, and if it is positive, nothing is displayed on the           
first 7-segment. The next 3 7-segments display the three         
digit integer. The fifth. 7-segment displays the decimal        
point. Lastly, the sixth and the seventh 7-segment display         
the two fractional numbers.  

 
Figure 12: FSM of the 7-Segment Display 

 

III. EXPERIMENTAL SETUP 

In order to verify that the calculator would work         
correctly, each component was simulated separately with its        
own test bench. This way, when combining all of the          
components together, it was guaranteed to function as        
expected. Since the keypad decoder code was provided by         
Digilent, a simulation was not created, and the code was          
directly tested on the hardware. There were no issues found          
during the hardware test. 

Figure 13, below, shows the timing diagram       
resulting from simulating the addition circuit. The inputs        
are two sign and magnitude numbers with the FX format [20           
8]. However, it was impossible to show the inputs with this           
format and be in sign and magnitude. Nevertheless, since         
fixed point addition is very similar to normal addition, if the           
result of normal binary is correct, it can be assumed that the            

fixed point addition would work correctly. One example        
that is shown in Figure 13 is -3200 + 10792 = 7592. 
 

 
Figure 13: Addition Simulation 

 
The subtraction simulation is very similar to that of         

the addition. The inputs are the same two sign and          
magnitude numbers in FX format [20 8]. The subtraction         
simulation is shown below in Figure 14. An example from          
the simulation shown below is -16192 - -7296 = -8896.          
Since the binary works correctly, it can be assumed that          
when changed to the correct fixed point format that it would           
be the correct result. 
 

 
Figure 14: Subtraction Simulation 

 
Figure 15 below shows the timing diagram for the         

multiplication circuit. This circuit uses a state machine for         
the control. So, unlike with the subtraction and addition, the          
answer is not shown instantaneously. It is an iterative         
multiplier, so the answer takes a few clock cycles. It is           
important to note that the sign is not simulated in the           
simulation below. The multiplication circuit took two       
numbers in [19 8] fixed point format. The MSB of the two            
inputs was sent to a separate XOR gate. Therefore, the          
results can be shown in the timing diagram with the proper           
radix. The example shown below in Figure 15 is 8.5 * 3.0 =             
25.5, which is correct. 
 

 
Figure 15: Multiplication Simulation 

 
Figure 16 below shows the timing diagram       

resulting from the simulation of the division circuit. Similar         
to the multiplication circuit, the sign is not considered inside          
of the iterative divider. Therefore, the two inputs have a          
fixed point format of [19 8], which does not include the sign            
bit. Therefore, the timing diagram could include the radix         
in the proper position. The example shown below in the          
timing diagram is 1418/2 = 709, which is correct. 
 



 
Figure 16: Division Simulation 

 
The timing diagram of BCD to binary converter is         

shown in Figure 17 below. For the simulation, the converter          
received the following input: +123.50. The output of the         
converter is “00000111101110000000”. This binary number      
is in the format [20 8]. The MSB is ‘0’ meaning the number             
is positive, “00001111011” is equal to 123, and “10000000”         
is equal to 0.50. Therefore, it is concluded that the converter           
is working properly. 

 

 
Figure 17: BCD to Binary Converter Simulation 

 
The timing diagram of binary to BCD converter is         

shown in Figure 18 below. For the simulation, the converter          
received the following input: “00110110000110001111”.     
This binary number is in the format [20 8]. The MSB is ‘0’             
meaning the number is positive, “01101100001” is equal to         
865, and “10001111” is equal to 0.56 when rounded to two           
decimal places. These are also the values that were         
outputted by the converter as shown in Figure 18. The          
converter shows the fractional BCD numbers as 5 and 5,          
even though the number it should output is 5 and 6. This is             
because of the rounding errors that happened during the         
conversion process. If the calculator can handle more digits,         
then the result would be more accurate. Therefore, it is          
concluded that the converter is working properly. 

 

 
Figure 18: Binary to BCD Converter Simulation 

 
Since all of the components were working       

separately on their own and have been simulated, it was          
decided that a simulation of the fully integrated project was          
not necessary. 

IV. RESULTS 

For the final implementation, several switches are       
used in order to enter multiple digits from the keypad. For           
example, switch 1 needs to be high in order to enter the sign             

of the first input. Then, switch 2 needs to be high in order             
to enter the 100th digit for the first input and so on until all              
the digits have been entered. Since the format is fixed, the           
user doesn’t have to enter a decimal point. These inputs are           
then converted from BCD to binary. The user then selects          
which operation to perform on the inputs using two switches          
on-board. “00” is entered for addition, “01” for subtraction,         
“10” for multiplication and “11” for division. The arithmetic         
is then performed and the result is shown on the 7-segment           
displays. It was found that due to the multiple conversions          
and only being able to show 2 values after the decimal point            
that there are some rounding errors. The error could be          
within +/-0.05 on any operation. However, this is        
acceptable. The final implementation of the project is shown         
below in Figure 19.  
 

 
Figure 19: Final Implementation 

V. IMPROVEMENTS AND CONCLUSIONS 

There are several improvements that can be made        
to this calculator in the future, such as getting the inputs of            
the keypad without using switches on-board. Another       
improvement is to display the two input numbers after the          
user inputs them. It is not possible to use the 7-segments to            
display the result the range was bigger. Also, if the range of            
fraction is larger, the method implemented to convert BCD         
to binary is inefficient and long. This final project was a           
great learning experience that was reinforced from the        
lectures and the labs from this semester. Calculators are one          
of the most common tools used globally, and this project          
allowed us to learn the amount of work that has been put            
into developing this simple, yet complex  tool. 
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