
Signed Fixed-Point Calculator
FX format: [20 8]

Cory Bledsoe, Rachel Pilarowski, Melvin Pulianthuruthil
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: cbledsoe@oakland.edu, rpilarowski@oakland.edu, pulianthuruthil@oakland.edu

Abstract—The purpose of this design project was to implement
a signed fixed-point calculator on a FPGA. This calculator is
able to add, subtract, multiply and divide two sign and
magnitude inputs which come from a keypad. The fixed-point
format for this calculator is [20 8]. It can handle numbers in
the range of [-999.99, +999.99]. The user can select which
operation to do by using the on-board switches and buttons.
After the calculation is completed, the result is shown on
7-segment displays.

I. INTRODUCTION
Calculators are some of the most common tools in

every occupation. They are fast and efficient, making them
a very powerful tool in simple arithmetic applications. In
this project, a signed fixed-point calculator was designed
and created using a Nexys A7 FPGA Trainer board and
VHDL programming language.

The purpose of this project was to gain a higher
appreciation for the computing behind a calculator. This
project will also serve to strengthen VHDL concepts,
reinforce troubleshooting skills and explore the concepts of
fixed-point arithmetic. Fixed-point arithmetic is useful
because it allows for both positive and negative
representation and includes fractional precision.

This calculator will work by taking a sign and
magnitude fixed-point number with the format [20 8] from a
keypad input and go through the basic arithmetic operations:
addition, subtraction, multiplication and division. The user
will use switches in order to decide which operation they
wish to complete. After the computation is completed, the
result will be shown on the on-board 7-segment displays.

II. METHODOLOGY

There are a few main components that this
calculator will include. The user interface will be a keypad
in order to enter the desired numbers and their sign. This
calculator can only handle numbers in the range of [-999.99,
999.99]. Because this calculator is using a keypad, the input
will need to be converted from BCD to binary. This is a
basic calculator which can compute basic arithmetic.
Therefore, 4 circuits are created to handle each of the
operations: addition, subtraction, multiplication and

division. A multiplexor is used to determine which of the 4
arithmetic will be computed. The user can use the switches
on-board to control the output of the multiplexor. Lastly, the
result will need to be converted from binary to BCD, and
then display the result on the on-board 7-segment displays.
A high-level block diagram is shown below in Figure 1.
More detailed explanations of each component is described
in the sections below.

Figure 1: High-Level Block Diagram of the Calculator

A. Keypad and User Interface
The goal is to allow the user to input the digits he

or she wants to calculate by using the Arduino 4x4 keypad.
There are 8 pins for the keypad, where the first four pins are
connected to the four rows, and the last four pins are
connected to the four columns. These 8 pins are connected
to the Nexys A7 JC PMOD port. The JC PMOD port has 12
pins. Pins 1-4 and 7-10 are used for logic signals, pins 5 &
11 are GND, and pins 6 & 12 are VCC which can provide
3.3V. For this project, only the logic signal pins are used
since power is supplied to the board using the USB port. In
Figure 2, the row 1-4 pins are connected to the PMOD pins
7 -10, and the column 1-4 pins are connected to the PMOD
pins 1-4.

mailto:cbledsoe@oakland.edu
mailto:rpilarowski@oakland.edu
mailto:pulianthuruthil@oakland.edu

Figure 2: Keypad Connection

The block diagram, in Figure 3, shows how the

program works. The decoder keeps the logic of one column
pin low and the rest high, and then checks each row in the
column for a logic low denoting a button press. If it does
find a logic low, it determines the corresponding value and
displays it to the 7-segment. If it doesn’t find a logic low on
any row, then the program keeps the next column low, and
repeats this process until it matches a logic low on a column
and a row. The Figure 4 shows the number displayed on the
7-segment when a button is pressed on the keypad [1].

Figure 3: Keypad Block Diagram

Figure 4: Keypad Demo

B. Addition
For this project, a simple full adder is used for both

the addition and subtraction. However, the full adder
expects integers in two’s complement and the output of the

BCD to binary is in sign and magnitude. Therefore, a
conversion between two’s complement and
sign-and-magnitude is needed. Once the result is obtained,
the result needs to be converted back to the sign and
magnitude format. Figure 5, shown below, is a block
diagram for the addition and subtraction circuits. It should
be noted that since this is addition, the “Cin” for the full
adder is ‘0’.

Figure 5: Block Diagram for Addition and Subtraction

The sign and magnitude to two’s complement

converter works by looking at the sign bit of the input. If it
is a ‘0’, or positive, it passes through the input without
changing it. However, if it is a ‘1’, or negative, it appends a
‘0’ to the magnitude of the input and converts it into two’s
complement. The two’s complement to sign and magnitude
converter works in a similar way. If the number is positive,
the input is not changed. However, if it is negative, the
input is converted [2].

C. Subtraction
The method of subtraction for this calculator works

very similarly to the addition. The same circuit which is
shown above in Figure 5 is used for the subtraction. The two
inputs are sign and magnitude and it needs to be converted
to two’s complement so that they can be fed to the full
adder. However, Cin is set to ‘1’ so that the inputs are
subtracted instead of added together. The result of the full
adder is then converted back to sign and magnitude in order
to be displayed on the 7-segment displays [2].

D. Multiplication
Fixed point multiplication works the same way as

the binary multiplication by using the two’s complement
system for the multiplications performed. The precision for
the multiplication must be taken into account because of
having to drop bits as the arithmetic operation for the
product can be much longer than the bit lengths from the
inputs. When multiplying two's complement numbers, there

must be a sign extension to the operands to meet the number
of digits for the multiplication that has been performed.

For this circuit, the input is two fixed point
numbers in sign-and-magnitude. The sign bit is sent to an
XOR gate to determine the sign of the number. After this,
zero’s are appended to the MSB of the second input,
increasing the number of bits from 19 to 38. After this has
been completed, a typical Iterative Multiplier circuit is used.
The block diagram and state machine for this circuit is
shown below in Figures 6 and 7. These circuits come from
Dr. Llamocca’s website [2].

Figure 6: Block Diagram for Iterative Multiplier

Figure 7: State Machine for Iterative Multiplier

This circuit works by looking at the LSB of the

second input, B. If it is ‘1’, then it is added to the
cumulative sum. After each iteration, both inputs are
shifted. After all bits have been shifted, the cumulative sum
is the answer. As discussed before, the answer will have 38
bits whereas the calculator can only handle 19 bits.
Therefore, the MSBs are cutoff as well as the LSBs of the
result. After this, the result is sent to the binary to BCD
converter and displayed on the 7-segment displays.

E. Division
Fixed point division works like a typical binary

division with a few extra steps. This calculator’s inputs also

are in sign and magnitude, therefore, the inputs do not need
to be converted to unsigned binary. Also, since the format
of this fixed-point calculator is constant, alignment is
already completed. However, in order to get some precision
for the fractional part of the number, bits need to be added
to the end of the dividend. For this calculator, 8 bits are
added to the LSB of the dividend since the fixed-point
format is [19 8], not including the sign. After these few
steps have been completed, the typical iterative divider
circuit can be used to complete the actual division. The
iterative divider that was used for this project comes from
Dr. Llamocca’s website [2]. The block diagram and state
machine of the iterative divider is shown below in Figures 8
and 9.

Figure 8: Iterative Divider Block Diagram

Figure 9: Iterative Divider FSM

This circuit is based off of the hand-division

method. Bits of A are compared one by one to the divisor.
If the result is greater or equal to B, then B is subtracted
from it. On each iteration, one bit of Q is determined. After
the division is completed, the last 8 bits of Q are truncated
and sent to the Binary to BCD converter to be displayed on
the 7-segment displays.

F.. BCD to Binary and Binary to BCD Converters

When a key is pressed, the keypad decoder will
output a corresponding BCD number. In order to do
arithmetics for the calculator, these BCD numbers need to
be converted to a binary number. There are three main
decoders for this converter: Sign Decoder, Integer Decoder
and Fraction Decoder. Sign decoder will output a one bit
binary number which is either a ‘1’ if B was pressed or a ‘0’
if A was pressed.The integer decoder has 3 components
which are used to obtain a 11 bit binary number
representing the 3 digit integer: 1th Decoder, 10th Decoder
and 100th Decoder. The 1th will receive a 4 bit BCD value
between 0 and 9, and it outputs an 11 bit value between 0
and 9. Similarly, the 10th decoder will output an 11 bit value
from 0 and 90, but the numbers go up by 10. Lastly, the
100th decoder will output an 11 bit value from 0 and 900,
but the numbers go up by 100. Then, these three binary
numbers are added together to obtain the final integer value
in the binary number. The fractional decoder is similar to an
LUT, and it contains 10 decoders. The two fractional BCD
numbers are concatenated together, and this 8 bit number is
used as the input. Then, by looking at the upper four bit of
the input, the program selects a decoder that will give the 8
bit binary number of the fractions. The first decoder holds
values from 0.00 to 0.09, the last decoder holds values from
0.90 to 0.99. The remaining decoders in between hold the
remaining binary values of the fractions. Once the three
numbers are processed, they are concatenated together to
form a 20 bit binary number which will be used for the
arithmetic operations. Bit 19 of the output is the sign of the
number, bits 18 to 8 are the integer, and bits 7 to 0 are the
fraction. Figure 10 is the block diagram of the BCD to
binary converter circuit.

Figure 10: BCD to Binary Converter Block Diagram

Once the arithmetic operation outputs a binary

result, it needs to be converted back to BCD number to
display the result on the 7-segment. The BCD of the sign is

determined by taking bit 19 of the result. A double method
is used to extract the three BCD numbers for the integer.
Since there are 11 bits, four BCD numbers are used, and
they are all initialized with 0s. But, the integer number
range of the calculator doesn’t go over 999. Therefore, only
three BCDs are required. The process starts by left shifting
both the BCDs and the binary number, and the MSB of the
binary number is shifted into the LSB of the first BCD.
Then, the program checks whether a BCD value is greater
than 4. If it is, the particular BCD is added with 3 and it gets
updated. If not, the numbers are left shifted again. This
process continues until all the binary number bits are shifted
into the BCDs. Next, the fractional BCD numbers need to
be extracted. The concatenated 8 bit fractional binary
number is multiplied by 10. The upper 4 four bits will be
0’s, bits from 11 to 8 is the BCD value of the first decimal
place number. The bits from 7 to 0 are, then, multiplied by
10. Bits 11 to 8 of the new product is the BCD value of the
second decimal place number. This process can be
continued if there were more fractional numbers. Figure 11
is a block of the fractional binary to BCD converter. The
converter will output the six BCD numbers which will be
displayed on the 7-segment.

Figure 11: Fractional BCD to Binary converter

G. Seven Segment Displays

In order to display the final result, seven
7-segments are used. The program uses a similar technique
that Dr. Llamocca has implemented in the program called
Serializer: Four 7-segment displays. Only one 7-segment
on-board can be enabled at a time. Therefore, a very small
delay needs to be implemented to enable each 7-segment.
The FSM in Figure 12 is programmed to enable each
7-segment on-board at a time. A pulse generator is used to
output a ‘1’ every 1 ms, which is used to transition the states
in the FSM. Even if there is a 1 ms delay to enable each
7-segment, the human eyes would not perceive it. Since
there are only seven states in the FSM, only the first seven
7-segments are enabled. The first 7-segment displays the
sign of the result. If the number is negative, a minus is
displayed, and if it is positive, nothing is displayed on the
first 7-segment. The next 3 7-segments display the three
digit integer. The fifth. 7-segment displays the decimal
point. Lastly, the sixth and the seventh 7-segment display
the two fractional numbers.

Figure 12: FSM of the 7-Segment Display

III. EXPERIMENTAL SETUP

In order to verify that the calculator would work
correctly, each component was simulated separately with its
own test bench. This way, when combining all of the
components together, it was guaranteed to function as
expected. Since the keypad decoder code was provided by
Digilent, a simulation was not created, and the code was
directly tested on the hardware. There were no issues found
during the hardware test.

Figure 13, below, shows the timing diagram
resulting from simulating the addition circuit. The inputs
are two sign and magnitude numbers with the FX format [20
8]. However, it was impossible to show the inputs with this
format and be in sign and magnitude. Nevertheless, since
fixed point addition is very similar to normal addition, if the
result of normal binary is correct, it can be assumed that the

fixed point addition would work correctly. One example
that is shown in Figure 13 is -3200 + 10792 = 7592.

Figure 13: Addition Simulation

The subtraction simulation is very similar to that of

the addition. The inputs are the same two sign and
magnitude numbers in FX format [20 8]. The subtraction
simulation is shown below in Figure 14. An example from
the simulation shown below is -16192 - -7296 = -8896.
Since the binary works correctly, it can be assumed that
when changed to the correct fixed point format that it would
be the correct result.

Figure 14: Subtraction Simulation

Figure 15 below shows the timing diagram for the

multiplication circuit. This circuit uses a state machine for
the control. So, unlike with the subtraction and addition, the
answer is not shown instantaneously. It is an iterative
multiplier, so the answer takes a few clock cycles. It is
important to note that the sign is not simulated in the
simulation below. The multiplication circuit took two
numbers in [19 8] fixed point format. The MSB of the two
inputs was sent to a separate XOR gate. Therefore, the
results can be shown in the timing diagram with the proper
radix. The example shown below in Figure 15 is 8.5 * 3.0 =
25.5, which is correct.

Figure 15: Multiplication Simulation

Figure 16 below shows the timing diagram

resulting from the simulation of the division circuit. Similar
to the multiplication circuit, the sign is not considered inside
of the iterative divider. Therefore, the two inputs have a
fixed point format of [19 8], which does not include the sign
bit. Therefore, the timing diagram could include the radix
in the proper position. The example shown below in the
timing diagram is 1418/2 = 709, which is correct.

Figure 16: Division Simulation

The timing diagram of BCD to binary converter is

shown in Figure 17 below. For the simulation, the converter
received the following input: +123.50. The output of the
converter is “00000111101110000000”. This binary number
is in the format [20 8]. The MSB is ‘0’ meaning the number
is positive, “00001111011” is equal to 123, and “10000000”
is equal to 0.50. Therefore, it is concluded that the converter
is working properly.

Figure 17: BCD to Binary Converter Simulation

The timing diagram of binary to BCD converter is

shown in Figure 18 below. For the simulation, the converter
received the following input: “00110110000110001111”.
This binary number is in the format [20 8]. The MSB is ‘0’
meaning the number is positive, “01101100001” is equal to
865, and “10001111” is equal to 0.56 when rounded to two
decimal places. These are also the values that were
outputted by the converter as shown in Figure 18. The
converter shows the fractional BCD numbers as 5 and 5,
even though the number it should output is 5 and 6. This is
because of the rounding errors that happened during the
conversion process. If the calculator can handle more digits,
then the result would be more accurate. Therefore, it is
concluded that the converter is working properly.

Figure 18: Binary to BCD Converter Simulation

Since all of the components were working

separately on their own and have been simulated, it was
decided that a simulation of the fully integrated project was
not necessary.

IV. RESULTS

For the final implementation, several switches are
used in order to enter multiple digits from the keypad. For
example, switch 1 needs to be high in order to enter the sign

of the first input. Then, switch 2 needs to be high in order
to enter the 100th digit for the first input and so on until all
the digits have been entered. Since the format is fixed, the
user doesn’t have to enter a decimal point. These inputs are
then converted from BCD to binary. The user then selects
which operation to perform on the inputs using two switches
on-board. “00” is entered for addition, “01” for subtraction,
“10” for multiplication and “11” for division. The arithmetic
is then performed and the result is shown on the 7-segment
displays. It was found that due to the multiple conversions
and only being able to show 2 values after the decimal point
that there are some rounding errors. The error could be
within +/-0.05 on any operation. However, this is
acceptable. The final implementation of the project is shown
below in Figure 19.

Figure 19: Final Implementation

V. IMPROVEMENTS AND CONCLUSIONS

There are several improvements that can be made
to this calculator in the future, such as getting the inputs of
the keypad without using switches on-board. Another
improvement is to display the two input numbers after the
user inputs them. It is not possible to use the 7-segments to
display the result the range was bigger. Also, if the range of
fraction is larger, the method implemented to convert BCD
to binary is inefficient and long. This final project was a
great learning experience that was reinforced from the
lectures and the labs from this semester. Calculators are one
of the most common tools used globally, and this project
allowed us to learn the amount of work that has been put
into developing this simple, yet complex tool.

VI. REFERENCES
[1] Yu, Michelle. “Pmod KYPD.” Digilent Documentation,

Digilent Inc. SUN 12 Apr. 2020,
https://reference.digilentinc.com/doku.php?id=reference/
pmod/pmodkypd/start.

[2] Llamocca, Daniel. “VHDL Coding for FPGAs.” VHDL
Coding for FPGAs. MON 20 Apr. 2020,
http://www.secs.oakland.edu/~llamocca/VHDLforFPGA
s.html

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

