John Akroush, John Kastran, Andrew Lee

o
X3
DS
X3

%

“On average, more than 50,000 crashes occur in parking lots and parking garages
annually” (ehstoday.com)

Helpful in situations where you may not be able to see when you are reversing.
Useful in night-time situations.

Can help decrease the number of accidents that occur during parking.

Reverse Locic HIGH

PROGRAM BEGIN

Trigger Counter

(counter_ivolt.vhd)
- Counts 60ms which is 1
Ultrasound period.
Sends the Trigger logic
high for 10us.

ReVERSE LocIc LOW
- Tone Control set to off,
SD <=0’

Echo Counter (counter_iecho.vhd)
Receives Trigger to enable the counter.
Only when trigger is logic low, after being
high, begins counting.
Send this counted value(echo_counts) to
the Finite State Machine.

Finite State Machine (frg_fsm.vhd)
Compare the value of
echo_counts
Send a frequency code for the
appropriate distance measured by
Echo Counter.

Send frequency code fo register

Register (my_rege.vhd)
Enabled while Trigger is low
Contains frequency code
Sends frequency code to
pulse width modulation tone
control

Tone Control (pwm_audio.vhd)
Receives frequency code to
change the tone

Receive an activation signal,
SD logic low shuts off the
output speaker

List of Components

Ultrasonic Distance
Sensor (HC-SR04)
Nexys A7 50T FPGA

10, 100, 220, and 330
Ohm Resistors

9V External DC Battery
Breadboard
Earphones/speaker
Wires

The Ultrasonic Sensor: HC-SR04
This sensor requires 5 volts to operate.

The sensor uses a 10us trigger pulse (40 kHz) to send a signal,
then waits for 60ms to make sure that the trigger signal and
the echo returning do not interfere

itput from 9V Source

y o - ~ | y N ~ \NANS
'C]S L S U () YOITAIr A ‘¢,\\; OUITOUT 1Ol I \\ JIT C ‘;‘»“.\ \ SOOI

Obtaining 5V oL

\A Jl 1

jge viviaer Circult w

Circuit Block Diagram

my_rege

Ultrasonic Sensor Counter iecho

pwm_audio
AUD_SD

AUD_PWM

echo_count UD_PWM
Audio Jack (speaker)

Counter Code

begin begin
echo_count <= cnt;
counter: process(clock, resetn, trig, idata)
begin
if resetn = '0' then
cnt <= (others => '0");

cntr: process(clock, resetn, start)

begin
if resetn = '0' then
cnt <= (others => '0');
¥ <= SO0:

elsif (clock'event and clock = '1') then
case y 1is
when S0 =>
if start
WS
else end

elsif (clock'event and clock = '1') then
case y is
when S50 =>
if trig = '1' then y <= S1;
else y <= S0; end if;--cnt

when S1 =>
if cnt < x"03e8"
cnt <= cnt +
else
cnt <= cnt +
¥ <= S2;
end if;

when S1 =>
if trig = '0' then y<= S2;
else y <= Sl1; end if;
when 52 =>
if idata = '1' then y <= S3;
else y <= 52; end if;
when S3 =>
if idata = '0' then y <= S0;
else cnt <= cnt+l; y<=s33; end if;

when 52 =>
if cnt < x"1b58" then
cnt <= cnt + 1;
else
cnt <= (others => '0");
¥ <= S0:
end if;
end case;
else end if;
end case;
else end if;

end process;

end process;

D: process(y)

begin .

case y is IeChO
when S0 => trig <= '0°'
when S1 => trig < i <
when S2 => trig <= '0

end case;

ivolts

end process;

——centi ((echo count/58) ,16
sStates process (centi, clock, resetn, trig)
begin

if resetn = "0' then

¥ <= SO0;
elsif ({(clock'event and clock = '1') then
if trig = 1" then y <= S0; else
case ¥y is
when S0 => if echo_count < x"0244" then Yy <= S0;
else ¥y <= Sl1l; end if;

when S1 => if echo_count > xX"1342" then ¥y <= 517
else y <= S2; end if;

when S2 => if echo_count > xX"0B54" then y <= S27
else y <= S3; end if;

when S3 => if echo_count > X"05AA" then y <= 537
else ¥y <= S4; end if;

when S4 => if echo_count > X"255" then y <= 547
else end if;
end case;
end if;
end if;
end process;

values: process(vy)
begin
case y is
when SO0 => oFrg <= "001"; ——-Most Severe
when S1 => oFrg <="011"
when S2 => coFrg <="100"
when S3 => oFrg <="101"
when S4 =>
end case;
end process;

T T)

Top File Code

begin

AUD SD <= AUD SDtop;
trig <= trigVeltsTop:;
regeTrigTop <= NOT (trigVoltsTop):;

a: counter_ivolts port map (clock => clock, resetn => resetn, start => AUD SDtop, trig => trigVoltsTop):
fb: counter_iecho port map (clock => clock, resetn => resetn, idata => idata, trig => trigVoltsTop, echo_count => ieCountOutTop);

fc: frq F5M port map (clock => clock, resetn => resetn, trig => trigVoltsTop, echo_count => ieCountOutTop, oFrg => FSMoutTop):
fd: my_ rege

generic map(N => 3)

port map (clock => clock, resetn => resetn, E => regeTrigTop, sclr => '0', D => FSMoutTop, Q => RegOutTop):
fl: pwm _audio port map (resetn => resetn, clock => clock, frg => RegOutTop, SD => SD, AUD PWM => AUD PWM, AUD SD => AUD SDtop):

end Behavioral;

%

0
%

Remote collaboration-

> Working remotely on hardware, while easier with the availability and high functionality of
meeting and collaboration software, is still a challenge nonetheless

FSM module code-

> The FSM took multiple iterations to find the correct state sequencing

Timing accuracy with the ultrasonic distance sensor-

> Without documentation it was impossible to create a functioning circuit, however once we
found out how the timing of the sensor was needed it was much easier

Audio Shutdown-

> We had a problem finding a way to dynamically update the Audio Shutdown using our circuit

% Implementing a distance controlled LED brightness to replicate a vehicle’s
headlights/rear lights as it would approach oncoming vehicles.
% Making the tone toggle instead of be a stafic tone.

https://youtu.be/KUatEbh2To4

https://youtu.be/KUatEbh2To4

0 https://www.ehstoday.com/safety/article/21917821 /black-friday-alert-driving-through-a-p

arking-lot-is-still-driving
1 Dr. Llamocca’s VHDL Coding for FPGA's Website

https://www.ehstoday.com/safety/article/21917821/black-friday-alert-driving-through-a-parking-lot-is-still-driving
https://www.ehstoday.com/safety/article/21917821/black-friday-alert-driving-through-a-parking-lot-is-still-driving

