
Floating Point Calculator

Kurtis Rhein, Ghaith Kachi, Brandon Holtz
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: rhein@oakland.edu, gkachi@oakland.edu, baholtz@oakland.edu

The goal of this project is to develop and demonstrate
successfully a piece of computer hardware capable of
calculating various operations of addition, subtraction,
multiplication, and division on floating point numbers of
32-bit size inputter through a keyboard and displaying the
result on a 7-segment display.

I.INTRODUCTION
In our project, we aim to make a floating point number
calculator on a Digilent Nexys-4 DDR FPGA board. The
hardware will take an input of a floating point number,
manipulate it based on an input (add, subtract, multiply,
divide) and display the output on 7-segment displays in
Hexadecimal format. The input mechanism will be via
USB using a USB keyboard. The project will utilize the
topics of floating point arithmetic and external interfacing.

II.METHODOLOGY
In this project, a USB keyboard and an FPGA board are
used to input data and output a result. All the data is in
HEX format. The 2 numbers get inputted via a USB
keyboard, then the operation desired is also selected using
that keyboard. The result is displayed on the seven segment
display after the registers A and B are fired through the
ALU, with the operation controlled by a decoder that is
selected with a code given to each operand. The operand
has its own finite state machine made up for it so that it
“locks” the operand selection in. It looks for a code
according to the F1, F2, F3, and F4 keys on the keyboard
and sets a flag high to keep the finite state machine from
reverting back to another type.

III.EXPERIMENTAL SETUP
The plan is to have a Top File that does each operation
individually along with a Test Bench that tests that
operation, then all the modules will be combined in one
Top File and a 7-segment display will be connected to
show the final results.
The control finite state machine dictates the order that the
calculator proceeds. It has four states, referring to the “Get
A”, “Get Operation”, “Get B”, and “Calculate” steps that
the calculator needed in order to function. The first state,
“Get A”, set up the according pathways to transfer the
inputs from the registers to the 32-bit register designated

for the A input once the Enter key was struck. Once this
was completed, a “Done” flag was raised, and State 2 was
performed.
State 2 is dedicated specifically to the operand finite state
machine. The FSM looks for an input and changes its
output as described before, which then sends a flag back to
the control circuit to continue onward to State 3, “Get B.”
This was similar to State 1, almost identical actually. Once
the value was recorded, State 4 triggers the operand register
and sends the 32-bit inputs through the ALU. The display is
also changed to show the output.
The output was done on a set of 7-segment displays. As
there were 8 of them on the Nexys 4 DDR board being
used, it was perfect to display the 32-bit output in
hexadecimal. The displays were serialized using the
serializer from Lab 4 (SPI Accelerometer Lab) so that each
individual hexadecimal digit could be represented when
State 4 came. When the output was not being displayed, a
signal from the input registers was mirrored and displayed
here so that the user could see what values they were
entering with the keyboard.

IV.RESULTS
The final output of the project is exactly like it’s supposed
to be. We’re successfully entering data using a keyboard
(numbers A, B, and an arithmetic key). Each number is
being shown on the 7-segment display on the FPGA board.
After both numbers are inputted, we show the result on the
7-segment display upon hitting the Enter key.

V.CONCLUSIONS
The floating point calculator worked as expected. We have
successfully combined components such as the adder,
subtractor, divider, and multiplayer together to create a
floating point calculator. When inputting in various 32-bit
size numbers and selecting an operation the result would
display on the seven segment display in a hexadecimal
format. The implementation plan of having a separate ALU
unit for one part of the group and another I/O framework to
place that ALU in worked wonderfully, allowing for
seamless integration and collaboration. If new ALU units
had to be replaced, the simple “A, B, S” I/O design allowed
this to be easy to do. The implementation of the PS/2

Keyboard circuit was also a success, however was met with
some challenge during design as the wrong “Done” signal
was used for cycling through the registers, causing a set of
3 inputs per keystroke to be made. This was resolved by
reevaluating the PS/2 Keyboard circuit and finding the
correct “Done” signal to use. This project was not met
without challenge, however the material learned in this
class reinforced the ability of problem solving in VHDL
programming, which saw the success of the project pull
through.

VI.REFERENCES
[1] Daniel Llamocca, Class notes-Unit 2, “Computer
Arithmetic”, W2020.
[2] Daniel Llamocca, Class notes-Unit 4, “Special-Purpose
Arithmetic Circuits and Techniques”, W2020
[3] Daniel Llamocca, “Laboratory 2”, W2020
[4] Daniel Llamocca, “VHDL Coding for FPGAs”
[5] Daniel Llamocca, Class notes-Unit 3, “External
Peripherals: Interfacing”

1- Adder/ Subtractor (Figure 1)
2- ​Multiplier/ Divider (Figure 2 and Figure 3)
3- Keycode
4- LUT
5- Finite State Machine
6- Hex to Seven Seg Display
7- Registers
8- MUX
9- Leading Zero Detector
10- Barrel Shifter

Figure 1: Adder/ Subtractor Block Diagram
This circuit was created and tested in Lab 3 of ECE 4710 and was reused in this project.

Figure 2: Multiplier Block Diagram Figure 3: Divider Block Diagram
These two circuits had to be constructed with information in Dr. Llamocca’s class notes. The Divider and

Multiplier were essential to get correct due to the useless nature of an inaccurate calculator.

Figure 4. Addition Simulation

Figure 5. Subtraction Simulation

Figure 6: Multiplier Simulation

Figure 7: Division Simulation

Figure 8: Top Level
The overall design of the circuit, with data being input at the top right by the Keyboard module and output

in the Hex to 7Seg module to output to the FPGA. Important design choices to note are the MUX and
DEMUX modules for the ALU, which are selected by the 2-bit code that the operation register puts out,

allowing the user to choose an operation.

Figure 9: Get Data

This circuit is a series of registers that get enabled and shift down when a new input gets put in from the
Keyboard (hence “DoneKbrd”). This helped to input one value at a time and also is the sole force behind

the active 7-segment display array that showed what was typed in.

Figure 9: FSM Control

The Control FSM is the driving force of the entire calculator. It defines what goals are being performed
and the credentials to move onto the next requirement. There was a slight adjustment while debugging

where EnA and EnB were moved to states S1 and S2 respectively to secure the input data, preserving it
for use in the ALU.

Figure 10: FSM readOp

This circuit was designed as a case statement that was looking for four distinct inputs from the keyboard
itself to assign operands to the rest of the calculator circuit.

