
Tones from Keyboard and Temperature Sensor

Using PS/2 and I2C with a Mono Audio Output and a Buzzer

Arsha Ali, Zhenye Li, Stefanie Kozera

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: arshaali@oakland.edu, zhenyeli@oakland.edu, stefaniekozera@oakland.edu

Abstract—the purpose of this project is to communicate and

interface with sensors that will result in tones being generated

on the mono audio output and through a buzzer. The

hardware for this project consists primarily of a USB standard

keyboard, the temperature sensor, a buzzer, and the mono

audio output present on the Nexys 4 DDR board. With the use

of a switch, the user will be able to choose between generating

tones using the keyboard or using the temperature sensor.

Another switch is used to choose between the buzzer and the

mono audio output. While using the keyboard, a unique tone

will be heard for fifteen different keys, with a sixteenth

variation of no tone. A qualifying key that generates a tone will

appear across all four seven-segment displays, with no tone

and nothing appearing across the seven-segment display for all

other keys. For the temperature sensor, one of sixteen tones

will be generated based off the current temperature reading.

This can be heard through the buzzer or the mono audio

output. The major finding is that a USB keyboard uses PS/2

for communication and the temperature sensor uses I2C for

communication. These communication protocols and

manufacturer specifications require carefully implemented

finite state machines. The conclusions clearly indicate that

different data communication protocols are powerful tools to

interface with sensors and to drive outputs. Recommendations

to the user include thorough testing of both the keyboard and

the temperature sensor.

I. INTRODUCTION

This report will outline the methodology, experimental

setup, results, and conclusions from undertaking this

project.

The motivation to generate tones and display figures on

the seven segment display stems from the desire to

showcase both a visual and auditory side of hardware. With

the pressed keyboard key or the temperature being displayed

on the seven segment display, the audience can clearly see

the outcome and proper functioning of the hardware

components. In addition, the audience can hear an output

from either the mono audio output or the buzzer. For the

keyboard side, a noise is only heard while a key is pressed.

For the temperature sensor side, a tone is continuously heard

that relates to the current temperature that is detected.

Topics discussed in class that are present in this project

include the functionalities of several hardware components

and their implementation in VHDL, such as finite state

machines, decoders, and multiplexers, among others. Also,

this project draws from the concept of interfacing with

external peripherals using the PS/2 and I2C communication

protocols.

Although discussed briefly in class, implementation of

the circuit that interfaces with the keyboard had to be

thoroughly learned. Also, the interaction with a temperature

sensor was studied for a more complete understanding.

Furthermore, the generation of pulse width modulation

(PWM) and pulse density modulation (PDM) signals had to

be thoroughly understood.

The applications of this project include using a keyboard

to generate tones, which is a form of a personal piano.

Tones generated from the temperature sensor serve as an

auditory aid for an estimate temperature. These tones can be

heard either through the mono audio output or a buzzer

based on the user’s preference.

II. METHODOLOGY

Figure 1 documents a high level architectural structure

of the system. Figure 2 shows the details of the keyboard

side of the system. Figure 3 shows the details of the

temperature sensor side of the system. Interfacing with the

keyboard and the temperature sensor was understood

through class notes [1]. The components that interfaced with

the peripherals were downloaded and modified/implemented

from the course website [2-4]. The datapath also consisted

of other basic components [5]. The components are

explained in further detail below.

A. my_ps2read

This block interfaces with a standard keyboard using

PS/2. The PIC24FJ128 chip inside the Nexys 4 DDR

emulates a PS/2 protocol for the FPGA. The inputs to this

block include the PS/2 clock and data, as well as the FPGA

clock and a resetn signal. On falling edges, the data is

captured. The format frame of the data is a start bit, which is

‘0’, 8 bits of data with the LSB transmitted first, an odd

parity bit, and a stop bit, which is ‘1’. For the data, there is a

setup and hold time that must be complied with. The signal

ps2c, for the PS/2 clock, goes through a filter and a falling

edge detector in an FSM issues a ‘1’ every time it detects a

falling edge on the clock signal. If there is a falling edge and

the start bit is ‘1’ on the data line, then this represents the

start bit. A counter from 0 to 9 is used to shift in the next 10

bits of data using a right shift register.

The filter makes sure that ps2c is constant for 8 clock

cycles before the output signal is changed. This is to reduce

the chance for glitches that could be misinterpreted as

falling edges. This circuit uses a right shift register to shift

in ps2c, an ‘and’ gate, a ‘nor’ gate, a decoder, and register to

output the filtered version of the clock.

The output of this block is the data out as 10 bits. This

consists of the stop bit, the parity bit, and the scan code of

the pressed key. The data out is configured in this format

due to the way that the data is shifted in. When all 10 bits

following the start bit have been shifted in, a done signal is

set to ‘1’ to indicate that the output data is valid.

The scan code is transmitted to the block every 100 ms.

Once the key is no longer pressed, a keyup scan code will be

outputted, followed by the scan code of the previously

pressed key.

B. my_ps2keyboard

This block consists of my_ps2read, registers, and an

FSM that checks for when a pressed key has been released.

Figure 4 details the flow of this FSM. The FSM checks the

done signal from my_ps2read to see if that lower 8 bits are

valid. After this, the FSM will check to see if the 8 bits

represent the key up scan code, which is typically 0xF0. If

not, this means that a key is being pressed, so an enable

signal is sent to the register to capture these lower 8 bits as

the scan code. This enable is also the data input of the done

register which is always enabled, so a done signal is issued

indicating that the scan code is valid. If the key up code is

issued, the signal keyup is set to ‘1’. This signal keyup is

only ‘1’ when the key up scan code is received. Since the

protocol follows the key up code by repeating the scan code

of the pressed key, state two is used to check when this scan

code has been received such that it can be ignored by the

output signals.

C. fsm_keyup

Figure 5 details the flow of this FSM. This FSM issues a

high signal once the first scan code is valid by checking the

done signal of my_ps2keyboard. This signal, called dEn,

stays high until the keyup scan code is received, at which

point the signal goes back to ‘0’. Effectively, this signal is

‘1’ while a key is pressed. The purpose of this finite state

machine is to serve as an enable for the keyboard_decoder

and the frq_decoder.

D. keyboard_decoder

This decoder uses the scan code from my_ps2keyboard

to output seven bits that will be given as the input to the

serializer. The output represents which leds should be

illuminated on the seven segment display. This decoder is

only enabled while a key is pressed. This is done by using

dEn as the enable. Thus, when no key is pressed or an

invalid key is pressed, the decoder outputs all 0’s.

E. frq_decoder

This decoder uses the scan code to output four bits and

an SD signal that will be given as the input to my_audio.

This decoder is only enabled while a key is pressed. For

qualifying keys that are pressed, a unique four bits are

outputted with an SD of ‘1’. These four bits will eventually

control the variation rate for a sinusoidal output from the

mono audio output.

F. serializer

The serializer inputs map to each of the eight seven

segment displays. For the serializer, the same output from

the keyboard_decoder is mapped to each input, such that the

same configuration will appear across all eight of the seven

segment displays. This input is inverted before going to the

leds of the seven segment display. The serializer component

consists of its own FSM, multiplexor, and counter. These

components serve to enable each of the seven segment

displays for 1ms. At this speed, it appears as if all of the

eight seven segment displays are illuminated at the same

time.

G. my_audio

To get a PDM signal with changing duty cycle, this

block is used. This circuit uses my_pwm, counters, and a

built-in LUT to generate a PDM signal. This PDM output

will eventually be connected to the mono audio output. This

block takes four bits as the input frequency, which controls

the variation rate of the changing duty cycle. These four bits

translate into a maximum counter value. Sample code is

shown in Figure 6. Each time that this maximum count is

reached, the output of an 8 bit counter increases by 1

between 0 to 255. The frequency for the output signal is set

to 10kHz. Thus, the four inputs bits control how quickly the

duty cycle changes. The output of the 8 bit counter is scaled,

and fed as the duty cycle input to my_pwm. The output of

this block is therefore a PDM signal.

H. my_pwm

There are 15 my_pwm components that are pre-

initialized with a 50% duty cycle and a frequency. Some

sample code is shown in Figure 7. Each of these 15 blocks

will produce a different tone on the buzzer, since different

tones on the buzzer are heard by different frequencies. The

duty cycle controls the volume. TPWM is the period of the

PWM signal in units of the FPGA clock cycles. Using

Equation 1, 15 frequencies ranging between 20Hz to 12kHz

are generated.

Equation 1:

𝑻𝒑𝒘𝒎 = 𝑻𝑷𝑾𝑴/𝒇𝒄𝒍𝒐𝒄𝒌

This component consists of an FSM, a register, and an

embedded counter. Essentially, the output PWM signal is

toggled every DC clock cycles and TPWM is used to check

if one period is complete before the sequence starts again.

The output of each of these blocks is one bit, part of the

output PWM wave. Each of these are the input for the 16-to-

1 Multiplexor.

I. 16-to-1 multiplexor

The inputs to this multiplexor are the one bit PWM output

signals from my_pwm. The last input to this multiplexor is a

constant ‘0’ bit, which will produce no tone on the buzzer.

The selector for this multiplexor is the scan code that is

outputted from my_ps2keyboard. Thus, pressing a

qualifying key generates a unique tone that is sent to the

buzzer.

J. 2-to-1 multiplexors

These 2-to-1 multiplexors are used to produce a sound on

either the mono audio output or the buzzer, but not both at

the same time. The selector for this multiplexor is a switch

on the Nexys board. There is a multiplexor for AUD_SD,

which will either enable or disable the mono audio output.

There is also a multiplexor for the output to the buzzer. By

correctly mapping the multiplexor inputs with ‘0’, the

switch is used to control whether the mono audio output or

the buzzer will be used to hear the tone.

K. tempsensor_i2c

This block handles interfacing with the temperature

sensor and outputting 16 bits of data pertaining to the

current temperature. This block consists of an

fsm_tempSensor that configures the temperature sensor for

16-bit mode and outputs either the low and high byte of the

temperature or the status and ID. wr_reg_adt7420 handles

I2C communication with the temperature sensor. There are

also two 8-bit registers for the high and low byte of the

temperature before these signals are outputted.

L. wr_reg_adt7420

This module controls I2C communication with the

ADT7420 temperature sensor on board the Nexys board

using the signals SCL and SDA. A start bit, a read/write bit,

and two eight bit buses relating to an address and data are

provided as inputs, and eight bits of data are outputted. In

addition, there is an output done bit and an output err bit.

The done bit is issued when the operation of either writing

or reading data is completed. This circuit is meant to convert

the timing protocols native to the ADT7420 temperature

sensor into an I2C signal. For this protocol, the start

condition is when there is a high-to-low transition on SDA

while SCL is high. This will start the data transaction. The

stop condition is when there is a low-to-high transition on

SDA while SCL is high. For reading data from the

temperature sensor, the master must write a 7-bit address for

the ADT7420 followed by a write bit. The

acknowledgement will come from the slave. The internal

register address is provided next, followed by another

acknowledgement from the slave. A repeated start condition

is next, followed again by the device address, and a read bit.

The acknowledgement comes from the slave and then the 8-

bit data comes from the slave. The master issues a not

acknowledge on this data, and then the stop condition is

asserted. This is accomplished through the use of three state

machines, left shift registers, counters, basic logic gates, and

buffers.

The fsm_scl generates a clock signal, rising and falling

edge detectors, and a delayed falling edge signal. The

delayed falling edge signal is to allow data to be kept for a

specific hold time as outlined by the manufacturer. The

clock signal is connected to an active-low tri state buffer

before going to SCL. The period of the clock signal is

determined by the generic input SCL_T. Data is to be placed

on this delayed falling edge and captured on rising edges.

The fsm_ack detects the acknowledge bit which is sent by

the I2C slave. If the acknowledgement does not arrive, an

error signal on err is issued. If the acknowledgement bit has

arrived from the slave, a done signal is set to high and used

by fsm_main to know when the next write/read cycle can

begin.

The fsm_main complies with the I2C protocol by issuing

various signals to the other components in this circuit. It is

important to note that data is transferred with the MSB first

so left shift registers are used.

M. fsm_tempSensor

This FSM configures the temperature sensor for 16-bit

mode by writing 0x03 on the 0x80 internal register. This

FSM also issues the addresses for either reading the high

and low byte of the temperature or reading the status and

ID. Signals for the I2C protocol are also issued and passed

to wr_reg_adt7420.

N. temp_decoder

Four temp_decoder blocks are used as part of the

datapath. Each decoder takes 4 bits as the input, which are

the bits relating to the high and low temperature reading

(odata_h and odata_l) after being split from 8 bits to 4 bits.

The output of these blocks are 7 bits that correspond to

which leds should be illuminated on the seven segment

display to represent those 4 input bits in hexadecimal

representation. The outputs are passed to a serializer block

before being sent to the seven segment display.

O. Mono Audio Output and Buzzer for Temperature Sensor

The bits 7 downto 4 of odata_l are used to control the tones

that are generated from the mono audio output and the

buzzer. These bits are passed to my_audio and are used as

the selector for the my_pwm outputs.

III. EXPERIMENTAL SETUP

The setup that was used in order to verify the

functionality of the project was first to plan out how each

signal would be produced. From there, each new component

would be constructed and implemented.

A keyboard file was first obtained from the course

website. This file was studied and modified for the intent of

this project. A serializer was then connected, followed by

the mono audio output components, and then the buzzer

components. Each step of the process was simulated and

verified for accuracy. The same steps were followed for the

temperature sensor. The preliminary file was obtained from

the course website. Next, the serializer was built, followed

by the audio outputs.

The software Vivado 2018.3 was used during the creation

of the program. The software allows the use of timing and

functional simulations to verify the intended functioning of

the project. The keyboard simulation was analyzed by

creating a test bench of the overall keyboard file. The test

bench consisted of two sample scan codes that may be

produced by the keyboard. The output parameters were

determined from the simulation. When the code initially did

not produce the expected results, the functional simulation

was used to trace signals and correctly identify the source of

error. This allowed for deeper understanding of the

hardware components and led to the creation of the

fsm_keyup. Without this finite state machine, a tone would

be generated and heard even after the key had been released.

This allows for a tone to only be generated when one of the

valid 15 keys are pressed. All other keys, as well as no key

pressed, do not produce a tone.

A testbench for the temperature sensor side of the project

was also used to create a simulation. Instead of creating the

I2C signals, the test bench began from providing data for

odata_h and odata_l. From these simulations, desired results

were verified.

Although the simulations were showing the desired

results, when the entire circuitry was tested on the Nexys

board, there were issues in the mono audio output. All other

aspects worked as expected. The code responded to inputs

from the switches, placed information across the seven

segment display, and generated a tone on the buzzer. It was

later learned that the tri state buffers that were originally

inside the my_audio component had to be removed. This

was because the tri state buffers sit at the I/O peripherals.

Instead, the output from these components for both the

keyboard and the temperature sensor side were fed through

a multiplexor, and this output was then the enable of a tri

state buffer.

The expected results are to generate tones only when a

qualifying key is pressed on the keyboard or to generate

tones continuously using the temperature sensor. A switch

should choose between a tone heard through the buzzer or

the mono audio output. Another switch should choose

between the keyboard or the temperature sensor, and a third

switch will choose between the temperature of the

temperature sensor or the status and ID of the temperature

sensor. The results are discussed in further detail in the

following section.

IV. RESULTS

Figure 8 shows the simulation of the keyboard

component and Figure 9 shows the simulation of the

temperature sensor component.

For the keyboard testbench, two scan codes were

simulated. The first scan code was 0x1C which is for the

letter “a” followed by the 0xF0 for the keyup scan code. The

switches input was “100”, meaning to hear the output from

the mono audio output from the keyboard. While the scan

code is 0x1C, a valid key is being pressed. Thus, the signal

dEn is ‘1’ and is enabling the keyboard_decoder and the

frq_decoder. The output signal AUD_SD follows dEn

exactly. The internal signal for AUD_PWM is a PDM signal

changing between high and low states. The actual output is

first passed through an active-low tri state buffer so the

actual output changes between ‘0’ and ‘Z’ for high

impedance as desired. The internal signal for the buzzer is a

PWM signal. However, due to the input switches, the actual

output on the signal buzzer is ‘0’ while the valid scan code

is present. Once the keyup scan code is detected, this means

that the key is no longer pressed. At this point, the dEn and

AUD_SD signals go to ‘0’. The internal buzzer signal

(signal b) also goes to ‘0’. The signal AUD_PWM is still

changing, but since AUD_SD is ‘0’, this signal is not heard.

For the temperature sensor testbench, instead of

providing the I2C signals, one temperature was simulated.

The arbitrary temperature was 0x12F6. The 4 bits that

determine the tone of the output are “1111”. The switches

input was “011”, meaning to hear the output from the buzzer

from the temperature sensor. In practice, sw(2) should have

been set to ‘1’, but it does not matter here for simulation

purposes as the incoming data is provided from the

testbench. The internal signal AUD_PWM is changing

between high and low states. The actual output AUD_PWM

is changing between low and high impedance states.

However, since the switches are set to hear from the buzzer,

AUD_SD is low and the PDM signal will not be heard. The

simulation shows how the internal PWM signal (signal b)

for the buzzer is the same as the actual output from the

buzzer. From these simulations, it is also clearly seen that

the output for the buzzer is a PWM signal while the output

for the mono audio output is a PDM signal.

The results were achieved by correctly integrating

various hardware components and external peripherals as

learned in class. The keyboard and temperature sensor are

able to accurately generate tones from the buzzer and the

mono audio output. A switch is used to toggle between

these two modes. When a key is pressed on the keyboard,

for only that time the appropriate figure appears across the

seven segment displays and the tone is heard. After

releasing the key, the seven segment display is empty and

no tone is heard. Tones are continuously generated by the

temperature sensor. As the temperature increased or

decreased, the tones changed as desired. The tones are

accurately heard either through the mono audio output or the

buzzer, as indicated by another switch. A third switch

chooses between either the temperature or the status and ID

of the temperature sensor. The results were as expected, and

all results were accounted for and explainable.

CONCLUSIONS

The main point that has been learned while doing this

project is that communication protocols are powerful and

useful methods to interface with external peripherals. It was

also learned that such protocols can be effectively

implemented in hardware, and the implementation should

abide by the manufacturer’s specifications. After thorough

testing for results, no issues remain to be resolved. The

intended outcomes for this project were achieved. Further

work could include the addition of generating tones using

one direction of the on-board accelerometer. In addition, the

RGB leds could be used to change colors based on the

current tone that is being generated. There is no limit to

other peripherals that could be added to this existing project.

The number of different tones could also be expanded to

include more keys from the keyboard and more bits from

the temperature reading.

REFERENCES

[1] D. Llamocca, “Unit 3-External Peripherals: Interfacing,” Mar. 2019,

pp. 2-3, 7-14.,
https://moodle.oakland.edu/pluginfile.php/5005747/mod_resource/co
ntent/7/Notes%20-%20Unit%203.pdf

[2] D. Llamocca, “PS/2 Keyboard Controller (XDC included),”
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

[3] D. Llamocca, “ADT4720 Temp. Sensor (I2C)-Basic Control (XDC
included),”
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

[4] D. Llamocca, “PWM: Tone control. Mono audio output with Low-
Pass Filter (XDC included),”
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

[5] D. Llamocca, “Unit 2: Concurrent Description.” VHDL Coding for

FPGAs, slides 7-10.,

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit
%202.pdf

 Figure 1: High-level architecture of the entire system

Figure 4: FSM to detect

key up scan code
Figure 5: FSM in

fsm_keyup component

Figure 7: PWM signals with different frequencies

Figure 2: Components in keyboard_test block.

Figure 6: Variation rate (max. count) for PDM signal

https://moodle.oakland.edu/pluginfile.php/5005747/mod_resource/content/7/Notes%20-%20Unit%203.pdf
https://moodle.oakland.edu/pluginfile.php/5005747/mod_resource/content/7/Notes%20-%20Unit%203.pdf
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%202.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Unit%202.pdf

Figure 3: Components in temperature_test block.

Figure 8: Keyboard component simulation

Figure 9: Temperature Sensor component simulation

