

Signed Fixed Point Calculator
Joshua Boczar, Alexander Ivanovic, Andrew Korte, and Benley Mathew

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: jjboczar@oakland.edu, aivanovic@oakland.edu, andrewkorte@oakland.edu,

bpmathew@oakland.edu

Abstract​:

The purpose of our project is to
create a fixed-point calculator that can
add, subtract, multiply, and divide signed
fixed point binary numbers. This
calculator is capable of taking a sign and
magnitude [12 4] fixed point binary input
and performing various arithmetic
operations on it. Switches and buttons
will be used to enter data and seven
segment displays will be used to display
the output. Overall, the design was
effective and functioned as expected.

I.​ ​Introduction

In today’s times, calculators are an
important part of life, they are very powerful
tools and without them the world would not
be as advanced as it is. To gain a better
understanding and appreciation for how
calculators work, our group decided to build
one. This report will cover how we created
the fixed-point calculator, how we overcame
the obstacles presented during the
calculator’s creation, what results we found
from experimenting with our calculator, and
what our project is capable of
accomplishing. The motivation behind
creating this project was to learn how to
create an effective calculator in VHDL.
Signed fixed-point can be very useful as it
allows for positive and negative numbers, as
well as the precision that comes along with
having fractional bits. This calculator will be
capable of taking in a sign and magnitude
[12 4] fixed point number, putting it through
the arithmetic operations and providing the

user with a signed decimal output. Topics
that were learned in class that this project
covers include calculating signed fixed-point
binary numbers, being able to create,
simulate, and port map multiple components
into VHDL, and being able to troubleshoot
and see multiple components in timing
diagrams for errors. Another aspect of our
project is the user interface. The user will be
allowed to use switches to enter in the sign,
the data that will go through the arithmetic
operation, and the arithmetic operation
itself. A button was used to load the data
inputs into their respective registers so they
can go through the calculation process. After
the calculations are complete, the user will
be able to view the output in signed decimal
via the seven segment display.

II.​ ​Methodology

A. Calculator Assembly
 ​There were many different components that
needed to come together in order for this
calculator to function properly. With each
component came a new set of difficulties
however, through careful planning and
thorough testing everything was able to line
up perfectly into a top file. The block
diagram can be viewed in figure one which
is located on the last page of the report. The
block diagram was put at the end of the
report due to the sheer size of it. Following
the block diagram in figure 1, it can be
viewed that the first component that starts
off the entire data path is the input interface,
after the input interface the data will travel
to a two’s complement component then to

Boczar, Ivanovic, Korte, Mathew 2

addition and subtraction, or just straight to
the multiplier and divider components. After
addition and subtraction the data will go
through another two’s complement
component and then will be stored in a
register. After the multiplication and
division component, the data will be stored
in a register. After all this is complete, the
data will go to a MUX where the select line
is controlled by an operation selection FSM.
After the data is selected, it will go to the
seven segment component so the user will
be able to see the correct answer. Now that
you have an understanding of how the data
will flow through the project it will be easier
to understand how each of the components
work as they are being explained in the later
sections.

 ​B. Input Interface

The very first part to this calculator
is the input interface. This is the part of the
calculator that takes the user input and
prepares it so that it is ready to go through
the arithmetic operations. The method
chosen to accept user data was by having
switches and buttons that the user can use to
input data and operations. The proper way
for the user to input data is to start by using
switch 14 to select the sign for the A input
(making this switch high will make A
negative, and leaving it low will keep A
positive), then use switches 11 down to 0 for
the A input in binary. After this, the user
must press the center button on the Nexys
board to load that data into its respective
register. The next step is to use switch 15 to
select the sign for the B input, after this they
can use switches 11 down to 0 to for the B
input in binary. Once the proper switches
have been selected, the user must then press
the center button on the Nexys board to load
the B data into its respective register. After
the A and B inputs have been loaded into
their registers, it is time to pick an operation

using switches 2 down to 0. The user must
use these switches to select what operation
they want to use and then press the center
button on the Nexys board to load it into its
register. Table 1 shows which switches need
to be high in order to achieve the desired
operation.

Now that you are familiar with how
the user is able to interact with the calculator
to achieve the desired result, it is time to
explain how the user interface was built and
implemented on VHDL. The main
component to the Input interface is the state
machine. This state machine is used to
detect when a button has been pushed and
released, based off of this it will enable
certain registers. Every time a button is
pushed and released, the state machine
moves along so that only the correct
registers are enabled. Once every register
has had data written to it the state machine
will enable a done signal enabling a final set
of registers that hold the data so it can go
through the arithmetic operations. The
reason the final row of registers is needed is
because the data for A and B is not loaded
instantly at the same time so the final
register holds that data until it has all been
collected so that the arithmetic operations
will work as expected. Figure 2 shows a
diagram in ASM form of the state machine
created for the input interface.

Boczar, Ivanovic, Korte, Mathew 3

Table 1:​ A table of the arithmetic
operations and their corresponding switch
inputs

Switch Input
(2 down to 0)

Operation

001 Addition

010 Subtraction

011 Multiplication

100 Division

Figure 2:​ The state machine used in the
Input Interface, where B = 1 checks to see if
a button has been pressed, and EA,EB,EO
are the enable lines for the A,B, and
Operation registers respectively.

C. Operation Selection State Machine
The operation selection state machine is
responsible for taking the data from the
register that holds the operation input and
converting it to a number that will act as the
select line for the MUX that determines
which output will be displayed on the seven
segment display. Looking back, it might
have been easier to create a decoder rather
than a state machine, but the state machine
worked just fine so it was not changed.
Figure 3 shows how the state machine was
created for the operation selector.

Figure 3: ​Operation Selection State
Machine

D. Addition and Subtraction
When beginning the project, the

addition, subtraction, multiplication, and
division components were designed
individually and simulated to make sure
their operation was correct. For the addition
and subtraction a zero was concatenated to
the MSB to allow for signed operation. The
sign of the number is determined with
switch inputs, 1 for negative and 0 for
positive. This means that the addition and
subtraction inputs are 13 bits long, 9 bits for
the integer and 4 bits for the fractional
portion.

Boczar, Ivanovic, Korte, Mathew 4

E. Multiplication
The inputs to the multiplication and

division are 12 bit numbers, 8 integer and 4
fractional. The multiplication works by
creating two temporary variables that are
double the size of the input numbers. In this
case the two variables are 24 bits long. One
of the variables is filled with zeros and the
other is the B input number with 12 zeros
concatenated to the MSB. Next, a For Loop
is used to multiply the A input and the
temporary B variable. The A input is
checked to see if a bit is equal to one. If so
the temporary B variable is added to the all
zeros variable. The temp B variable is then
shifted to the left. If the bit in the A input is
zero then the temp B variable is just shifted
left and the process continues. The For Loop
is executed N times with N equal to the size
of the 2 inputs. For example the For Loop is
executed 12 times for this project as the
inputs are 12 bits long. The output for the
multiplier is different from that of the other
operations. To preserve the range of inputs,
the outputs of the multiplier are five integer
numbers and two fractional numbers.

F. Division

Division in fixed point is very
similar to division in normal binary,
however there are a few extra steps that
must be accounted for. Normally, the input
for a signed fixed point division would need
to go through a two’s complement process
however, since the input to the calculator
will be in sign and magnitude that will not
be needed as the sign bits will simply go
through an XOR gate and if the output is a
1, a negative sign will appear on the seven
segment display. The same method will be
used for multiplication. The next step to
doing fixed point division is adding four
zeros to the LSB. These extra four zeros will
provide us with an extra four bits of
precision. After this actual dividing process

works the same as it does for normal binary,
meaning that you need to keep subtracting
the numerator from the remainder until the
remainder gets too small, after this the
decimal point was placed four bits to the left
of the LSB since the format we chose was
[12 4] and the output was sent to a Binary to
BCD convertor so that it could be displayed
on the seven segment display. The method
we decided to used to implement the divider
into VHDL was the iterative divider. The
iterative divider utilizes shift registers and a
state machine, it essentially shifts the input
and subtracts the output from it. The
iterative divider used was largely based off
of the one that can be found on Dr.
Llamoca’s website. A picture of the iterative
divider can be found in figure 4 and the state
machine for it can be found in figure 5.

Figure 4​: Iterative Divider Schematic

Boczar, Ivanovic, Korte, Mathew 5

Figure 5​: Iterative Divider State Machine

G. Basic Arithmetic Information
Next was the design of the Binary to

BCD converter. A generic Binary to BCD
converter was used to convert the outputs of
the Adder, Subtractor, and Divider. The
multiplier has a special Binary to BCD
converter built inside the component as the
number of numbers after the decimal is
different than that of the other three
operations. After that was created as a
group, the calculation components were
connected and simulated along with the
converter to find if the main components of
the signed fixed-point calculator were
operating correctly. The range of inputs for
the operations is -128 to 127.

 ​H. Seven-segment display interface

After the data goes through the
arithmetic operations, the output will be
displayed on seven segment displays. The
outputs to the operations are put through a
Binary to BCD converter. This makes it
easier to display on the seven segs. If the
number had been left in binary a large
decoder would have been need to show the

correct values on the seven segment. The
display works by port mapping decoders to
each of the BCD numbers and then taking
the decoder output to a display controller.
The display controller then turns the correct
display on and displays the correct number.
A decimal point is also included in the
display. This was achieved by adding an
extra bit to the MSB of the normal seven
bits that are sent to the displays. This extra
bit controls whether or not the decimal point
turns on for that display. For addition,
subtraction, and division the decimal point
for the 5th display is turned on to show 4
numbers after the decimal and three
numbers before the decimal. For
multiplication the decimal point for the 3rd
display is turned on to show two numbers
after the decimal and five before the
decimal.

I. Bin to BCD and BCD to Bin
In a normal Bin to BCD converter

the binary number is shifted to the left and
then groups of four bits are checked to see if
they are greater than four. If so that you add
three to the bits. This method is called
double-dabble. For the fractional numbers
you multiply the binary number by 10 and
grab the top 4 bits. This is repeated till the
desired amount of fraction numbers. These
numbers will all be in BCD form. A BCD to
Binary convert was made to convert the
Keypad inputs. The converter was taken out
after it was determined that the Keypad
would not be used and that the inputs would
be in binary. The way the converter worked
was, the integer values were multiplied by 1,
10, or 100 depending on what spot they
represented. Then they were added together.
For the fractional numbers it was more
complicated. First, the numbers were treated
as integer numbers and converted to binary
using the previously stated way. Next, the
number was multiplied by 256. Lastly, that

Boczar, Ivanovic, Korte, Mathew 6

number was divided by 10,000. An example
would be, 0.5678 = 5678 => 5*1000 +
6*100 + 7*10 + 8*1 = 5678(in bin) =>
(5678*256)/10,000. The final result would
be the binary equivalent to the decimal
fraction.

III.​ ​Experimental Setup

The software that we used was the
computer design software Vivado. It was
used for all of the simulation and code
created and tested. The hardware tools we
used and incorporated into the signed fixed
point calculator included the Nexys DDR
Board, and the 7 segment display operating
on the board. Another feature of Vivado that
was used included creating the actual digital
block diagrams in VHDL that were then
printed out and uploaded for visual use. The
expected results of the simulation and actual
components in real time is to see numbers
that are being inputted to be outputted as a
signed BCD number. Components that had
errors within their simulation were explored
and corrected. Testing and simulating the
entire Vivado created calculator progressed
well. Soon, after the testbench was created
and the simulation was checked for any
errors, the actual calculator will was
synthesized and generated through the
Nexys DDR board for further testing.
Timing diagrams or the simulated results
will be provided and shown during the final
presentation. After all of the Vivado
simulations were run, the project was loaded
onto the actual board and tested. Figure 6
shows a timing simulation showing that all
of the operations function as expected. Note
that for the subtraction operation that the B
input is negative which resulted in a double
negative which caused the subtractor to act
as an adder. This showed that our subtractor
can work under any condition it is given.
The reason the negative sign does not show
up in front of the B input is because the

negative sign was taken care of through
switch 14. Figure 7 shows that the project is
functioning as expected on the Nexys board.
The test ran on figure 7 was -110.125
divided by 20.0625 which equals -5.4891.
Because there are only 4 bits of precision,
the fractional numbers are a little bit off, but
that is to be expected.

Figure 6: ​A timing diagram for all

operations

.​Figure 7: ​A picture of the project

working flawlessly on the Nexys 4 DDR
board

IV.​ ​Results

After completing the fixed point
calculator, we were able to get values that
were converted from signed fixed point into
binary coded decimal. All the operations
were completed using the Nexys 4 DDR
board, the switches provided, and the seven
segment display also provided. We tried
using the keypad interface to input our
values but we were unsuccessful in

Boczar, Ivanovic, Korte, Mathew 7

integrating the keypad into our actual circuit
and program. When the keypad was
integrated, the values that were outputted
were either inconsistent or wrong entirely.
Either the keypad itself was malfunctioning
or it was the actual program not being able
to link with the Nexys 4 DDR board and the
code within VHDL.

The result of our keypad not being
able to operate was to replace the keypad
with the use of registers and switches to
complete the arithmetic operations and
overall calculations. A great learning
experience overall was not only being able
to complete signed fixed point arithmetic,
but was also being able to complete the
arithmetic in VHDL while also accounting
for multiple different cases that ranged from
completing the actual arithmetic to making
sure other components that were also being
created operated properly together inside the
program. Making sure the display was
operating correctly was a task that needed to
be addressed. As simple as it was, it was
extremely important to make sure the seven
segment display showed the correct
outputted values. Without the values being
displayed, how would we have known if the
actual calculator was working properly other
then through the use of the test bench and
simulation.

V. Improvements That Could Be Made

The biggest improvement that could
be made is the addition of a keypad
interface. The design and implementation of
the keypad did not end as expected.
Interfacing with the keypad was much more
difficult than what was originally assumed.
The problem was with debouncing. Because
of how the keypad worked timing for the
debouncer circuit was very hard to calculate.
The keypad is active low along with the fact
that, not every bit for the keypad is changes
when a new button was pushed. A finite

state machine and multiplexor were created
in order to connect the keypad and
7-segment display together on the Nexys
DDR Board. The keypad uses a row and
column system with pull down resistors to
achieve an active low interface. The keypad
was going to input numbers in BCD and
therefore these inputs would have needed to
be put through a BCD to Bin converter. A
lot of the work was completed for the
keypad however it never worked so it had to
be excluded from the final version of this
project. It appeared that bouncing keys
caused the problem however the addition of
a debouncing component caused the
problem to worsen. The keypad interface
component would have consisted of a
decoder that would read keypad data, a state
machine to detect button presses, and
registers to store the data. The Keypad was
not included in the final design of the project
but a separate demo project was built to
show how the Keypad works. The BCD to
Binary converter was also not included in
the project as the inputs are not input using
binary values through switches. Another
small improvement that could be made
would be to have functionality that would
allow the user to see the inputs as they are
inputting them. As of now, the only thing
appearing on the seven segment display is
the final Answer. Overall, the group is very
pleased with the final product and we are
very proud of our work.

Conclusions

Overall, we were able to create a
fixed point calculator using VHDL and the
Nexys 4 DDR board. This calculator was
able to convert fixed point into BCD using
arithmetic operations that worked through
components created in VHDL. Port
Mapping each component to one another
was not an issue, but making sure the
number of bits was correct for each

Boczar, Ivanovic, Korte, Mathew 8

component was a slight task we had to
overcome. The biggest issue we ran into
was not being able to use the keypad with
our calculator. Halfway through the project,
we found that the keypad was not operating
correctly and wasnt outputting the correct
values onto the seven segment display even
though the simulation was outputting the
correct values. In the end, we used switches
on the board for activating are arithmetic
operations along with using registers to
complete the calculations overall functions
without the keypad interface. Issues that
remain to be solved include making the
keypad interface operate with the overall
program and device. Another issue that
could have made our fixed point calculator
better is to be able to see the inputted values
being displayed on the board as we were
typing them in. It is a small addition, but an
overall improvement that could be
accomplished if more time was permitted.
Despite these challenges, the calculator
functioned as expected.

 ​Figure 1: ​A block diagram of the overall
top file for the project. It has been rotated
sideways so that it could fit on the page.

Boczar, Ivanovic, Korte, Mathew 9

References
[1]http://www.secs.oakland.edu/~llamocca/
VHDLforFPGAs.html
[2]​https://reference.digilentinc.com/referenc
e/pmod/pmodkypd/reference-manual?_ga=2
.3320496.1623223115.1555982345-604595
610.1551111620
[3]​https://moodle.oakland.edu/course/view.p
hp?id=221052

https://reference.digilentinc.com/reference/pmod/pmodkypd/reference-manual?_ga=2.3320496.1623223115.1555982345-604595610.1551111620
https://reference.digilentinc.com/reference/pmod/pmodkypd/reference-manual?_ga=2.3320496.1623223115.1555982345-604595610.1551111620
https://reference.digilentinc.com/reference/pmod/pmodkypd/reference-manual?_ga=2.3320496.1623223115.1555982345-604595610.1551111620
https://reference.digilentinc.com/reference/pmod/pmodkypd/reference-manual?_ga=2.3320496.1623223115.1555982345-604595610.1551111620
https://moodle.oakland.edu/course/view.php?id=221052
https://moodle.oakland.edu/course/view.php?id=221052

