
Driving an RGB LED Package with Variable Duty Cycle to Produce a Large

Range of Colors as Perceived by an Observer

Ashley Turner, Kurtis Craig, Malcolm Whitehouse

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: klcraig@oakland.edu, anturner@oakland.edu, mewhiteh@oakland.edu

Abstract—RGB LEDs are an up-and-coming technology that

can be used to create, in theory, any color in the spectrum of

visible light. In this project, we took the opportunity to

familiarize ourselves with this technology and learn about the

implementation and application of RGB LEDs, as well as other

related topics. In addition, we learned about how color is

measured and how to work with RGB LEDs effectively.In

addition, we learned from our mistakes in implementation that

time-based functions take great care to implement well, and

that it is important to know the limitations of the technology

one is working with.

I. INTRODUCTION

This project was chosen as an opportunity for us to learn

about the implementation and applications of RGB LEDs.

LEDs in general, as energy-efficient as they are, are taking

over in a big way. With such a large number of lighting

applications from street lights to house-hold light bulbs

being replaced with LEDs, it has become clear to us that, as

electrical engineers, any knowledge of and experience with

LEDs that we can accomplish will go a long way in our

careers and in our daily lives.

This project in particular covers some fundamental points

on LED control. In the process of implementing Mode 1,

where the color displayed by the RGB LED is controlled by

the values on the DIP switches, we learned that several

timer-based functions in conjunction can be tedious to

implement. We learned improved methods for the use of

timers and the dangers of irresponsible programming. With

respect to the function of this mode on its own, the possible

applications are many. Some examples of the application of

user-controlled RGB displays include, for example, solar-

powered lawn lamps of which the user may change the color

for holidays or however they please.

In Mode 2, we made use of our knowledge of the PWM

channels and the ADC functions to control the color of an

LED with input from a sensor. The possibilities are virtually

endless when it comes to sensor-controlled RGB LED

applications. One possible example, as mentioned in the

presentation, would be to mount RGB LEDs in parking lot

lights, indicating by their color whether the parking spot is

taken or available.

In Mode 3, the color displayed on the RGB LED was

controlled by a joystick (Originally an accelerometer. We

will cover this in the results section.). The user is asked to

imagine that they are controlling a curse on the CIE 1931

xyz Chromaticity Diagram, and as he/she changes the

position of the joystick, the color displayed by the RGB

LED corresponds to the color coordinates of the cursor’s

position.

 For us at this time, implementing this mode was a great

exercise in learning, intuitively, the interactions between

colors and gaining an understanding of this widely-accepted

measurement standard. In the real world, an optimized

version of this device could be used as a validation tool in

the process of engineering parts that contain LEDs. If such a

device could be programmed by a user to display any of the

possible color coordinates, then a developer or customer

could use this device to validate products against their color

requirements.

II. METHODOLOGY

A. Hex Keypad

The hex key pad code is the main driver for the different

modes, using this code we would be able to switch between

one of 3 modes by simply pressing the assigned button for

that mode. The hex key pad code has several things going

on, we will not talk about his due to report length limits.

When integrating the code for the other modes (starting with

mode 1) into the code for the hex key pad we encountered a

major problem. We suspect that the delay function used to

operate the LCD display is also used to run some of the

timer PWM signals for the RGB LEDs. This issue created

problems with controlling the RGB and LCD so the

program would get stuck. We attempted several solutions to

try to fix the issue but none worked, due to time constraints

were not able to include this in the final presentation.

B. RGB LED Strip

The RGB LED strip was an idea to get more noticeable

color difference due to the higher output LEDs and number

of LEDs used. While you can buy RGB LEDs in many

packages the LED strips are commonly available. An issue

with this setup is that these strips are designed to run at 12v

and the HCS12 only puts out a logic voltage level of 5v.

Another issue was even though we had more RGB LEDs

and the light output was higher, how would we best

“display” theses colors. This is when we decided we needed

a diffuser to better mix the colors.

C. Mode 1 –Controlling the RGB with DIP Switches

In Mode 1, the eight DIP switches control the color

displayed on the RGB LED. The logic used to display the

colors is modeled after the way VGA calls out colors using

eight bits. DIP switches 1-3 control red, switches 4-6

control green, and 7-8 control blue. We used case statements

to change the value of “HCYCLES” and “LCYCLES” for

each LED, where the duty cycle is proportional to the binary

value of the two or three DIP switches controlling the color.

This means that there are eight different duty cycle values

for red and green, and only four different duty cycles for

blue.

In this mode, the LEDs are driven using timer interrupts.

This code was modeled after the example code “unit9c.c”

uploaded on Moodle and used functions from the “timers.h”

file provided to the class by Lincoln Lorenz. Timer channels

1-3 were used in this case to call interrupts that toggled their

corresponding bit on Port P, which in turn toggled the signal

on each color of the RGB LED. The “main” portion of the

code in Mode 1 constantly checks the DIP switches,

changing the number of clock cycles between the toggles of

each bit accordingly, as previously states.

D. Mode 2 – Temperature-Controlled Colors

In Mode 2, the color displayed by the RGB LEDs was

controlled by the temperature reading from the on-board

temperature sensor. The goal, originally, was to create a

smooth fade between blue at cold temperatures, white at

room temperature, and red at warm temperatures.

Unfortunately, this smooth transition proved impossible. As

it turned out, the temperature sensor on the development

board had a resolution of only 1ᵒC. In order to create the

smoothest transition, then, we found the largest range of

temperature that we could reach during a demonstration in

class, and based the calculations of the duty cycle of each

color on this range of temperatures.

We determined the definition of “cold” and “warm”

based on the temperatures we could reasonably reach in

demonstration. By holding a frozen lunch box cooler to the

board, we found we could reach 16ᵒC, and we could reach

43ᵒC by applying heat from a dryer to the temperature

sensor.

Figure 1- Duty Cycle with Respect to Temperature

The interesting problem in this mode was determining

how to fade from blue to white, and from white to red. As it

turns out, in additive color mixing, light blue can be created

by driving red and green at the same duty cycle as one

another, but with a lower duty cycle than blue. The greater

the difference between the duty cycle of blue and the duty

cycle of red and green, the closer the displayed color will be

to blue. As the duty cycle of red and green increases

towards the duty cycle of blue, the color shifts more towards

white. The same concept applies to fading between white

and red by holding red at 100% duty cycle, and decreasing

the duty cycle of blue and green together as the temperature

increases. We discovered the properties of additive color

mixing by experiment, changing the duty cycles of the

LEDs until we gained an intuitive understand of the result of

mixing different colors of light together.

In Mode 2 and Mode 3, we decided to drive the LEDs

using the PWM channels for simplicity in programming.

The duty cycle, calculated using the algorithm described

above, would be set continuously in an infinite loop, using a

ratio of the number of clock cycles that make up the entire

period. These calculations were carried out in a function that

accepted two arguments: Color and duty cycle percentage.

“Color” was simply an integer, 0 -2. We declared three

integers that related “RED,” “BLUE,” and “GREEN,” to

these integers, so an example of such a function call would

look like “set_PWM(RED, 50).”

𝑃𝑊𝑀𝐷𝑇𝑌𝑛 =
𝐶𝑦𝑐𝑙𝑒𝑠 𝑖𝑛 𝑃𝑒𝑟𝑖𝑜𝑑

100
 × 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 %

E. Mode 3 – Navigating the CIE Chromaticity Diagram

The reference for the colors to be created is the CIE

Chromaticity standard graph. CIE is the International

Commission on Illumination and the body responsible for

lighting and color standards around the world. The graph in

figure 2 shows the range of visible colors as can be seen by

the human eye. The Y-axis is the hue and the X-axis is the

measure of color saturation. The triangle portion of the

graph is called the gamut and represents the colors that can

be reproduced correctly with RGB LED’s. This also

explains the color variation in the accompanying video of

the project as the graph is referenced outside this area.

Figure 2 - 1931 Chromaticity Diagram from Reference [5]

Originally, we had planned on using an accelerometer for

this mode, but due to the noise of the unit (failure of the

accelerometer) we chose to try some different hardware as a

last-ditch effort to test whether this noisy information was

the fault of our design, or an unavoidable caveat of the

accelerometer. This new hardware, an analog, dual-axis

joystick, produced an extremely clean and reliable signal.

This resolved our problem with this mode, and since then

we have had no problems with this code. Naturally, the

formulas calculating the duty cycle of each color at all

points in the color space could use plenty more

optimization, but the code does work for our purposes.

In addition, the color coordinate of the color currently

displayed on the RGB LEDs were also displayed on the

LCD. We found that the color displayed on the RGB LEDs

was very close to the corresponding color coordinates on the

actual CIE 1913 Chromaticity Diagram, meaning that we

had reached our objective for this mode.

The first thing we needed to do was translate the position

of the joystick to a position on the color space. Using the

debugger feature of the CodeWarrior IDE, we found the

integer values of the up and down position and the left-right

position at each extreme in the x and y directions of the

joystick. Then, we simply used a ratio to convert these

values into color space values. For example, in the x

direction, we found that we got 0 when the joystick was

completely to the left, approximately 400 when the joystick

was at rest, and approximately 1000 when the joystick was

all the way to the left. The results were the same for the up-

down position. Since the value of the integer was not

completely linear with its position, we used a different ratio

to calculate the color coordinates whether the joystick was

to the left or right, and similarly for up and down.

Once we converted the position of the joystick to a

position on the color map, we then needed to calculate the

appropriate duty cycle of each color LED at any given point.

We chose to do so by dividing the color map into three

threshold lines like in the diagram below. The duty cycle of

red, for example, would increase as the distance of the

current point was below the red line and farther away from

the line, by calculating the distance of the current point from

this line and setting the duty cycle of red proportional to this

distance from the line. The same sort of calculations were

performed for blue and green. See the calculations for the

duty cycle of red below as an example. Note that this

calculation only applies when the “cursor” is below the line

for red.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐿𝑖𝑛𝑒 =
 900𝑥 + 750𝑦

1171

𝑅𝑒𝑑 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐿𝑖𝑛𝑒 ×
100

250

These coordinates were then passed to the set_PWM()

function and the duty cycle of the waveform for each color

was determined by the coordinates distance from its

respective side of the gamut. The further it was away, the

more duty cycle increased.This was accomplished by a

series of “if, else if” statements.

Figure 3 - 1931 Chromaticity Diagram from Reference [2]

III. EXPERIMENTAL SETUP

A. Hex Keypad

The initial process was to just to get the key pad to be

able to detect that a button was pressed and display what

mode the program would be in based on the button that was

pressed. Once this was verified each mode was to be

integrated into the hex key pad code so it would all run from

one file. If it did not run as expected some parts were

commented out and some more lines of code were added to

give simple output that would be seen if it was doing as

expected. The process was done until some expected results

were seen; by this you can sometimes debug large code

structures quicker. This might only be good in such cases

where the number of break points is limited, which was the

case when using CodeWarrior.

B. RGB LED Strip

The strip we used has two sets of three LEDs. Each set

of three LEDs for each color are run in series with a resistor.

Then that is run in parallel with one other set of three RGB

LEDs. In order to use the RGB LED strip we needed a way

to drive them at medium to high switching speed at a

voltage that is higher than what the HCS12 runs at. These

LEDs are connected in a common Anode configuration (Fig.

4) and require 12v to run them.

Figure 4- From Reference [4]

To drive these we decided to use an N-channel MOSFET,

the one we used is BS170 from Fairchild Semiconductors

[1].Considerations on selecting a MOSFET to drive the

RGB LEDs are switching speed and current handling. The

switching speed on the BS170 MOSFET is 10ns (as seen in

figure 5), which would give about 100MHz, which is well

above the 24MHz that the HCS12 will run at. The current

handling of the MOSFET will have to support the current

draw of each color in the RGB LED. This is a max of

100mA(each color) as seen in figure 6.

C. Mode 1 – Controlling the RGB with DIP Switches

In Mode 1, the hardware setup included the onboard DIP

switches and RGB LED, and the MOSFET to RGB LED

strip previously described. In this case, the RGB LED strip

was driven by pins PP4, PP5 and PP6 for convenience, since

the code was originally written to work with the onboard

RGB LED. The RGB LED strip was added later when it

became clear that the on-board RGB LED would be difficult

to display to the class.

This mode implemented timer-thrown interrupts as the

source of the PWM signal. Each timer regularly called its

own interrupt that checked the corresponding timer counter

against the “HCYCLES” and “LCYCLES” values for the

color driven by that timer, and toggled the appropriate bit of

Port P when the given amount of time had passed.

When the code was run, we expected to see the color

displayed by the RGB change according to the position of

the DIP switches in a specific way. The duty cycle of each

LED was expected to increase in proportion to the binary

value of each section of the DIP switch. For example,

Switch 1 would be the most significant bit describing the

duty cycle of the red LED, and Switch 3 would be the least

significant bit. If all of the switches were off, we would

expect to see no light at all, and if they were all on, we

would expect to see white.

D. Mode 2 – Temperature-Controlled Colors

Just like in Mode 1, Mode 2 controls the RGB LED strip

through the MOSFETs. The only differences between the

hardware setup between this mode and the previous is that

this mode also uses the LCD to display the current

temperature, and uses the temperature sensor as the input

instead of the DIP switches.

As for the software, we accessed the temperature

sensor’s measurements by reading ADC pin 5. Its

measurement was constantly displayed on the LCD. As a

result of the coding described in the Methodology section,

we expected to see the RGB LEDs display white at 24ᵒC,

fading to blue as the temperature increases with “true” (only

blue LED on) blue displaying at 16C and below, and fading

from white to red as the temperature increased from 24C,

displaying “true” red at 43C.

E. Mode 3 – Navigating the CIE Chromaticity Diagram

This mode uses a joystick to navigate the above graph

and produce the colors at each x and y coordinate. To map

the x and y coordinates a joystick was wired to a breadboard

and the pin for the x axis was connected to PAD 00 and the

pin for the y axis was connected to PAD 01. A function,

ad0conv(0), from main.asm was called to average four

successive readings of the A/D and put them in intermediate

variables buff0 and buff1. This method was written by Dr.

Haskell and is from the Learn by Example text by him and

Dr. Hanna. [3] The x and y coordinates were then

determined by multiplying the coordinate by its axis length

and dividing by 1024.

IV. RESULTS

A. Hex Keypad

While we tried many ways to debug the problem we

were unable to resolve the underlying issue. This issue is

thought to be from the Timers that the RGB and LCD use

given more time, this method could have been successfully

allowed us to find the problems and fix them. One thing

that was noticed is that if all the parts that do anything with

the LCD is commented out and mode 1 is run first then run

mode 2 is run it would work. Later on it was notices that

mode 1 did not work quite right but mode 2 did when using

this method, but if mode 2 was run first then mode 1 it

would not work at all (mode 3 what not integrated to the hex

key pad code due to time constraint.

B. Mode 1 – Controlling the RGB with DIP Switches

We have found that the DIP switches did indeed control

the color displayed on the RGB LEDs, and that each color

was controlled by the switches we expect to control those

colors, but we have found that the duty cycles applied to the

LEDs did not necessarily correspond linearly with the

binary value of each set of switches. In fact, the correlation

between the DIP switch values and the duty cycle of the

color seemed to invert or remain the same randomly.

We have determined that this result is due to the manner

in which we toggled the bits of Port P. Since we used a logic

command to toggle the bit, the polarity of the generated

PWM would depend on the most recent value of each bit

when the DIP switch value was changed. In order to fix this

issue, we would recommend clearing and setting the bits

according to the “HCYCLES” and “LCYCLES” count,

rather than blindly toggling the bits in all cases. The reader

may find a demonstration at:

https://www.youtube.com/watch?v=Y76o0OshgPQ&feature

=youtu.be

C. Mode 2 – Temperature-Controlled Colors

This mode ended up working exactly as expected. At

room temperature of 24C, the RGB LEDs displayed white.

As the temperature decreased, the color displayed faded to

blue at 16C. As the temperature increased, the color

displayed faded from white to red, reaching red at 43C. To

improve upon this code, we would recommend increasing

the range of temperature in order to smooth out the color

transition and use a temperature sensor with a higher

resolution. The reader may find a video demonstration at:

https://www.youtube.com/watch?v=y552ksX6uTU

D. Mode 3 – Navigating the CIE Chromaticity Diagram

Figure 5 - MOSFET Switching Characteristic from Reference [1]

https://www.youtube.com/watch?v=Y76o0OshgPQ&feature=youtu.be
https://www.youtube.com/watch?v=Y76o0OshgPQ&feature=youtu.be
https://www.youtube.com/watch?v=y552ksX6uTU

The waveform was then sent to LEDs. As we watched

the coordinates and looked at the locations on the graph, the

colors displayed on the LED strip matched the location on

the chromaticity graph. Success! The reader may find a

video demonstration at:

https://www.youtube.com/watch?v=96VHouoOjP4&feature

=youtu.be

CONCLUSIONS

We learned a lot about designing a system to run

on the HCS12 microcontroller. We had many issues, while

many where resolved we still had many more. Some

improvements we could have made to the overall project

could include: More careful programming with the timers,

we could have obtained a better temperature sensor with a

larger range, and optimizing the math for the color model

and better hardware.

REFERENCES

[1] BS170 (PDF Datasheet N-Channel Enhancement Mode Field Effect
Transistor)
https://www.fairchildsemi.com/products/discretes/fets/mosfets/BS170
.html?keyword=BS170

[2] "CIEXYZ - Color Models - Technical Guides." CIEXYZ - Color
Models - Technical Guides. Web. 5 Dec. 2014.
<http://dba.med.sc.edu/price/irf/Adobe_tg/models/ciexyz.html>.

[3] (Hanna, D., Haskell, R.; Learning by Example Using C; Rochester, MI;
2008, print)

[4] "Multi Color LEDs-Make Them In Work For Your Projects." Digital
IVision Labs!:. Web. 5 Dec. 2014.
<http://www.divilabs.com/2013/04/multi-color-leds-beginner-level-
guide.html>.

[5] "Pushing Pixels." Pushing Pixels RSS. Web. 5 Dec. 2014.
<http://www.pushing-pixels.org/2010/01/07/animations-201-
color.html>.

[6] RGB 5050SMD http://www.betlux.com/product/SMD_LED/BL-
LS5050A0S3.PDFBS170

Figure 6 - MOSFET Electrical characteristics from reference [6].

https://www.youtube.com/watch?v=96VHouoOjP4&feature=youtu.be
https://www.youtube.com/watch?v=96VHouoOjP4&feature=youtu.be
https://www.fairchildsemi.com/products/discretes/fets/mosfets/BS170.html?keyword=BS170
https://www.fairchildsemi.com/products/discretes/fets/mosfets/BS170.html?keyword=BS170

