
LCD Controller

Chris Ross, Brandy VanLoo

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: ckross@oakland.edu, bmvanloo@oakland.edu

Abstract—For our project, we made an LCD Controller. The

user would be able to put text on the LCD using only command

line, making it so they don't have to have extensive knowledge

of microcontrollers. After the text was completed and the user

was satisfied, they would submit it, and then be able to text

effects, such as blinking and scrolling, using the buttons on the

board. Overall this worked well, although we would have

preferred if the user would have been able to do everything at

once via the command line.

I. INTRODUCTION

This project covers the basic LCD and serial
communication interface (SCI) functionality, as well as our
special commands and text effects for our system. The user
enters a specific command to enter text, and the SCI
connection delivers it to the chip (HCS12DG256). Then the
chip relays this communication to a command for the LCD,
and translates that command to the LCD to do display what
the user wants. After the user is satisfied with the text, they
would submit their text to the system. Then they would be
able to add any text effects they wished by pressing the
buttons on the dragon board.

The purpose for this is to create a system that would
provide the user a simple way to display text on the LCD
screen. This allows the user to display text and add effects
without the knowledge of assembly or C languages.

Our project covers the basic LCD functionality, such as
initialization, displaying characters, and clearing the display.
It also covers the basics of the Serial Communications
Interface including sending, receiving, and timing of the
interface.

Some applications of this project include displaying text
on an LED sign. With some modifications, this project could
be used to take in some input and automatically display
relevant information. For example, the air pressure inside of
an airplane could be measured using a sensor, and then
displayed as part of the pilots’ cockpit display for them to
monitor.

This project also made use of the mixasm.h,
mixasm.asm, sci.h, and timer.h files that were used in lab.

II. METHODOLOGY

A. LCD Commands

We decided there would be five commands available, and
two different text effects.

Setup - This is something that is done automatically
when the program is started. Since the user will always have

to setup the LCD, it is one less command for them to type in
before they start to use the program.

"FirstLine"-This will prompt the user to enter in a string.
The program will then take this string, up to the first 16
characters, and display it on the first line of the LCD.
Because this command specifies that is uses the first line, no
overflow to the second line will be done. This command will
also leave whatever is in the second line as it was before
calling the command.

"SecondLine "-Similar to the "Firstline" command, this
will prompt the user to enter in a strong. The program will
then take whatever is in the string, up to the first 16
characters, and display it on the second line of the LCD
screen. Also similarly, it will only write to the second line of
the LCD, and leave the first line as it was before the
command was called.

"Write "- Similar to the last two commands, the user will
be prompted to enter in a string. However, this command
will utilize both the first and second lines of the LCD display
by taking the first 32 characters of the string displaying the
first 16 characters on the first line, and the second 16
characters on the second line. This will allow the user to
have more flexibility and ease of programming by
programming both lines at the same time.

"Clear"- This command will clear everything on the
LCD, specifically, the text.

"Exit"- Upon this command, the program will exit the
text portion and go to the text effects part. This is what
finalizes and submits the text.

B. Serial Communication Interface (SCI)

We used the serial communication interface for the
communication between the user and the board. We used the
RS-232 standard that is described in our textbook. We used
the SCI serial connection (SCI1 port) on the Dragonboard to
connect to the computer to the program for the user.

The program on the computer is the interface for the user
for the text entering portion. It sends the communication to
the dragonboard via the serial connection, and then the
dragonboard responds after executing the instruction given to
it. The user is able to see the execution of the command
immediately on the LCD.

C. Buttons

This project also used the buttons wired to Port H. These

were utilized to control the text effects. Pressing the first

button returned the text to normal. Pushing the second button
caused the text to blink until the first button is pressed again.
The third button causes the text to scroll across the screen.
For these to work, all of the DIP switches were placed in the
high position. Pushing each buttons would cause a
corresponding bit on port H to go low. Using a logical
bitwise OR, they were compared to a char value with the
respective bit brought low.

D. Programming

After deciding the commands for the LCD, we could then
begin programming the LCD using the functions we
obtained from Lab 5. To do a simple write to the console, for
communicating the commands to the user for example, we
were able to use the SCI1_putline function. Similarly, to
gather the commands from the user, we used the
SCI1_getline function. This helps us determine what has
been entered into the program.

In addition to these functions, some private functions
were created. For example, we have an "OutputLines"
function which prints out the lines to the LCD. The first and
second lines are stored as global variables, in order to be
accessible from any function. This outputlines function then
writes those to their respective places using the Lab 5
commands.

Another group of functions we created have to do
directly with writing to the LCD. These include the "write",
"firstline" and "secondline" commands. All of these
commands update the global variables, and then call the
"outputlines" function discussed above.

We also have the "clear" and "exit" functions that directly
relate to the serial commands. In "clear" we set both of the
global variables to null characters so they won't display
anything. The "exit" command is used to exit the program,
and as such, is the defining characteristic to break out of our
while loop for putting the text on the LCD.

For the text effects, we also have functions that
correspond to both of them. We have a "blink" that utilizes
the Timer Module to be able to provide the user a blink, as
well as a "noblink" that returns the text to a normal, non-
blinking state. We also have the "scroll" function that scrolls
once on the LCD.

E. Timer Module

We chose to use the output capture in the Timer Module
to be able to make the text on the LCD blink. We first
figured out the maximum delay we could have at one time
using the output capture. This used the pre-scale value of
128, and is shown below:

We said this was approximately 350 ms. We wanted our
LCD to be on about twice the time it was off, because it's
easier to see that way. We then said our off-time would be
175 ms. From the above calculation, we knew that we would
need 65535 cycles for 350 ms. Since 175 is exactly half of
350, we knew the number of cycles would be exactly half
(and since it is an odd number we rounded down one clock
cycle) to obtain 32767 clock cycles.

Similar to what we saw in class, we used a boolean
variable to flip between the 350ms high and 175ms low time.
To ensure that we always started with the low time, we set
the timer low for 10 cycles, and then waited until it went
high. This way we ensured that we would always get the
correct high and low signals.

F. Interrupts

Our project made use of interrupts through the timer
module. When the channel 4 counter on the output capture
would change from either low to high or high to low, we
received an interrupt. If the signal was high and is switching
to low, we clear the LCD, add the amount of low cycles, and
flip the boolean flag value. If the signal was low and is
switching to high, we output the lines of the LCD, add the
amount of high cycles, and flipped the boolean value once
more.

In order to have an interrupt on both the rising and falling
edges, we had to set the TCTL1 register to toggle, or 0x01.
We used this particular register and value, since we were
using the fourth channel of the timer module, and the toggle
value is 0x1.

To turn off the blinking, we simply turned off the timer
interrupts. This was done by writing 0x00 to the TSCR1
register. If we wanted to enable blinking again, we would re-
enable the timer module interrupts by setting it up again just
as we did the first time.

G. Assembly and C Code

Our code made use of assembly functions in the setup of
the timer module. We called these function in the main c
code, which then connected the functions to those in
assembly (mixasm.asm) through the header file (mixasm.h)
that connected them.

There was one function that set up the basic stuff for the
first time running the timer. This set a bunch of registers to
the correct values to set up the timer module. This was called
"timerinit". We then had another function that reset the
interrupts so that they fire on a rising or falling edge
("toggle4"). Our last assembly function was a "finalinit"
function which finished up our initialization. Since we
wanted to ensure that we always started on a low signal, we
had to break up the initializations to wait for the signal to go
the way we want.

III. EXPERIMENTAL SETUP

To test our project, we used the Freescale Codewarrior
IDE, as well as both the Dragon12-Plus Board and the
Dragon12-Lite. Our final project was presented on the
Dragon12-Plus board. For that board, we used an actual
serial connection to USB to hook into the computer. Also
unique to the Dragon12-Plus board, there was a jumper that
had to be placed on the RS232 pin.

The expected results were that we would be able to use
the serial communication to communicate with the LCD in
the first stage, by using PuTTY to receive and transmit the
messages to/from the DragonBoard, which would then
change what was on the LCD as appropriate. In the second

stage, there was no specific hardware or software, as this
used just the buttons and LCD that was on the board.

RESULTS

Originally, we were hoping to be able to do all of the text
effects as well as writing the text via serial command line.
While we could write the text and scroll the text with no
problem, we ran into issues once we implemented the timer
module code for the blink. Once it started blinking, we lost
all communication with the board and had to restart.

Since we couldn't solve this problem, we went with the
current implementation, which was to use the buttons to be
able to control the text effects. The rest of the original plan
had stayed the same.

After we split the project up into the two stages, we were
able to test just the serial communication to the LCD in
regards to writing text. This part worked fine, and we were
able to perform this up to expectations.

For the text effects, after splitting up the project, we were
able to test using the buttons on the board. The blink seemed
good, as did the non-blink. In trying out the scroll, we
discovered we could both blink and scroll at the same time
and even that worked fine. This was by design, and
sometimes you wanted to be able to do both.

For the most part, everything worked as it was expected
to, with the exception of the bug that we weren't able to blink
and keep control of the serial communication. From trying to
debug the issue, we believe it was either an interrupt error, or
a timing error. The serial communication uses interrupts to
be able to time the receiving and sending of the data. When

we globally enabled interrupts, this feature seemed to go
away, which could explain the interruption in serial
communication. It could have also been a timing issue,
related to enabling the timer module clock, and that
frequency getting mixed up with the one that the serial
communication was using.

The LCD as well as serial communication were talked
about extensively in class. These concepts, as well as
knowledge of the buttons and mixed assembly and c
programming were all implemented in this project. Except
for the bug, all of these worked as explained in class without
many issues.

CONCLUSIONS

This project taught the difficulty of working with the
serial communications. Utilizing interrupts at the same time
cause several issues. While these were addressed by using
the serial port at a different portion in the code than the
interrupt, the conflict was avoided. Finding the reason for the
conflict could give this project more real-world implications.
Moving forward, there are several more improvements that
can be added. The duration of blinking could be varied. Also,
longer strings could be stored for the scrolling module, or
scrolling could be line-by-line.

REFERENCES

[1] Huang, H. (2010). The HCS12 / 9S12: An Introduction to Software

and Hardware Interfacing. Clifton Park, NY: Delmar, Cengage
Learning.

