Jeff Page
Oakland University Fall 2014

Project for ECE 570

PWM motor controlled line following robot

Introduction

The main object is to design a robot that can follow a reflective line that is placed on a carpeted surface.
The robot has a chassis, 4 electric motors, an H bridge, the dragon12-Light board and a handmade
infrared light sensor(with 5 outputs).

Infrared sensors

s

The Line Sensor

The sensor originally consisted of; Printed Circuit Board, five infrared LEDs, five photo transistors. It also

had ten resistors, five 120 Ohms and five 11k Ohm resistors. The image blow shows the diagram of the

circuit.
R1 =120 Ohms Yo
R2 = 11k Ohms gz
RIZ
L1 - Infrared LED L1 = ot
N/

—

T
T1 - Photo Transistor

Vce -5 Volt Input GND

GND - Ground

Vout — Voltage Output

The voltage output ranged from 4.8 to 4.95 volts
depending on whether the sensor was on white
tape or on the carpet. This voltage output was
not ideal for the A to D converter because there is
not a large difference in the voltages. Due to this |
created an Op amp to provide a 0-5V output. The

actual output ended up being about 0.5-5V. This

was a much more ideal than the voltage output
that previously provided by the sensor. The Op

Amp circuit that | designed is shown below.

R1 =150 Ohms

R2 =220k Ohms

R3 =4.7k Ohms

R4 = 10k Ohms

OP1 — LM 358 Operating Amplifier

Vce -5 Volt input

GND - Ground

Vout - Voltage Output

.

Vee
T
vz (s
\'\OM Vout
L1 '
Va R | M
ém R4
% GND

1 x infrared emitter - 2V 40mA

1 x phototransistor detector - 20V 25mA

http://www.radioshack.com/product/index.jsp?productId=2049723

Creating a comparator in C language | can tell which sensor is above the reflective tape.

led[0] = ATDIDRO;
led[1] = ATDIDRL;
led[2] = ATDIDRZ:
1ed[3] = ATDIDR3:
led[4] = ATDIDRA:
“PORTE = 0=01;

1f(led[0] » led[1l] && led[0] » led[4] && led[0] » led[2] &é& led[0] » led[3]){ &k
lelse if(led[1] » led[2] && led[l] » led[3] &é led[1l] » led[d4] && led[3] » led[0]
lelse 1f(led[d] » led[1l] && led[2] » led[3] && led[2] » led[4] && led[2] » led[0]
lelse 1f(led[3] » led[1l] && led[3] » led[2] && led[2] » led[4] && led[3] » led[0]
telse 1f(led[4] » led[1l] && led[4] » led[3] &k lled[4] » led[2] &b led[4] » l=d[0]
B

ooo

A schematic is shown below for deciding which motor should be driven during the operation.

¥ = ¥ Y . ¥ . —
LED 1 LED 2 ’ LED 3 ‘ LED 4 LED 5
. S N A _-l__ Y L
Sharp left (” Slightleft Y (~ Drive \ (Slight right \ /~ Sharp right
turn J ! turn /o straight / \ turn \ turn /

Experimental Setup

To test smaller parts of my code | used tools to make sure that the code was working. To
ensure that the sensor was working | used a multi-meter test the voltage output. To test that
my code was working for the A to D converters and the comparator | lit the LEDs on the
Dragonboard to say which one is active. To test the PWM output to the H bridge | used a mult-
meter to make sure that | was getting the voltage level that | wanted.

Results

The result of the project was that | created a robot that could tell where the line was relative to
the right or left side of the car. This was shown on the LEDs of the board. Then | sent a PWM
output to the H bridge to drive the motors. | had some issues with the voltage levels and fine

tuning of the H bridge to get the motors to work the way that | wanted them to but they do
show the correct direction for which the robot should travel.

Conclusion

The key take away and improvements that could be made are with respect to the H bridge
control that | previously mentioned. The H bridge provided motor control that was either too
high or too low based on the voltage source that | applied to it. |think that a bit more time
with the dine tuning of the PWM source in the code and finding the proper voltage source that
the robot would have worked very nicely.

Sources

The H Bridge Spec Sheet

Mode 1: Analog Input

Analog input mode is selecied by setting switches 1 and 2 to the UP position, Switch 3 should be
either up or down, depending on the batiery type being used. Inputs 51 and 52 are configured as
analog inputs. The output impedance of the signals fed into the inputs should be less than 10k
ohms for best resalis. If you ane using a potentiometer to generate the input signals, a 1k, 5k or
10k lincar taper pot is recommended. In all cases, an analog voltage of 2.5V comesponds to no
movement. Signals above 2.5V will command a forward motion and =signals below 2.5V will
command a backwards motion.

There are three operating options for analog input. These are selected with switches 4, 5 and 6.
All the options can be used independently or in any combination,

Switch 4: Mixing Mode

If switch 4 is in the UP position, the Sabertooth 2x10 is in
Mixed mode. This mode is designed for easy sieering of
differ=ntial-drive vehicles. The analog signal fed into 51
conirols the forw ard/back motion of the vehicle, and the

analog signal fed into 52 controls the turning motion of the

vehicle, If Switch 4 is in the DOWN position, the Switch 4: Mixed or independent
Sabertooth 2x 10 is in Independent mode. In Independent mode, the signal fed to 51 directly
controls Motor 1 (outputs M1A and M1B) and the signal fed to 52 controls Motor 2.

Switch 5: Exponential response

If switch 5 15 in the DOWN position, the response to input
signals will be exponential. This sofiens control around the
zero speed point, which is useful for control of vehicles

with fest top speeds or fast max wuming rates. If switch 5 is

in the UP position, the msponse is lincar,

Switch 6: 4x sensitivity

If switch & is in the UP position, the input signal range is
from (v to 5, with a zero point of 2. 3v,

If switch & is in the DOWN position, 4x sensitivity mode is
enabled. In this mode, the input signal range is from
1LE75V 1o 3,125V, with a zero point of 2.5v, This is useful

for building analog feedback loops Switch & dx sensitivity

Note on using filtered PWM in Analog

Lo piarss T for using PWHL in Snalog Moda

MDdB F ol —lll’l:‘:‘:'l.u'\——i'l'n-l'l
L
E L
& ﬂ.ﬂ-_'_
If you are using a filtered PWM signal from a g ¥anaND T ¥ o
microcontroller to generate the analog voltage, an RAC filter

with component values 10k ohms and at least . 1uof is
recommended as shown in Figure 4.1, Using a larger value

H 4.1: Filtered PWM
filter capacitor such as luf or 10uf will result in smoother S :

muotor operation, at a cost of slower transient response. A PWM frequency higher than 1000Hz is
recommended

Mode 2: R/C Input

R/C input mode is used with a standard hobby Radio control transmitter and receiver, or a
microcontroller using the same protocol. R/C mode is selected by setting switch 1 to the DOWN
position and switch 2 to the UP position. If running from a receiver, it is necessary to obtain one
or more servo pigtails and hook them up according to figure 5.1. If there are only motor drivers
being used it is acceptable to power the receiver or microcontroller directly from the Sabertooth
as shown. If the system also has to power servos or other Sv loads, we recommend a ParkBEC or
a receiver battery pack, as shown in figure 5.2. If using a receiver pack, do not connect power to
the 5V line of the Sabertooth because the maximum voltage it can tokerate is 6V.

Figure 5.1: R/C connection

There are three operating options for R/C mode. These are selected with switches 4, 5 and 6.

Switch 4: Mixing Mode

When Switch 4 is in the UP position, Mixed mode is
selected. In this mode, the R/C signal fed to the S1 input
controls the forward/backwards motion of the vehick. This

is usually connected to the throttle channel of a pistol grip Yo PSPFY
transmitter, or the elevator channel of a dual stick 5

transmitter. The R/C signal fed to the S2 input controls the R/C Mixed or Independent
tumning of the vehicle.

When switch 4 is in the DOWN position, Independent mode is selected. In this mode, the signal
fed to the S1 input directly controls Motor 1 (M1A and M1B) and the signal fed to S2 controls
Motor 2.

Switch 5: Exponential response

If switch 3 is in the UP position, the response is linear.

If switch 5 is in the DOWN position, the response to input
signals will be exponential. This softens control around the 3 4 ,
zero speed point, which is useful for control of vehicles . e eeew
with fast top speeds or fast max tuming rates.

Exponential mode enabled

Switch 6: R/C Mode/Microcontroller
mode select

If switch & is in the UP position, then the Sabertooth is in
standard B/C mode. This mode is designed to be used with

a hobby-style transmitier and receiver, [t automatically IR R
calibrates the control center and endpoints to maximize
stick usage. It also enables a Timeowt Failsafe, which will Microcontroller mode selected

shut down the motors if the Sabertooth stops receiving
comect signals from the receiver.

If switch & is set in the DOWN position, then Microcontroller mode is enabled. This disables the
Timeout Failsafe and auto-calibration. This means that the Sabertooth will continue to drive the
motor according to the last command until another command is given. If the control link is
possible unreliable — like a radio - then this can be dangerous due w the robot not stopping.
However, it is extremely convenient if you are controlling the Sabertooth from a microcontroller.,
In thi= case, commanding the controller can be done with as little as three lines of code.

Output_High{Pin connected to S1)

Dreday(1000us to 2000us)
DOutput_Low(Pin connected to 51)

A note on certain MiCroprocessor receivers

Some moeivers, such as the Spektrum ARG000, will output servo pulses befor a valid
transmitter signal is present. This will cause the Sabenooth o antocalibrate to the reeiver's
startup position which may not cormespond to the center stick position, depending on trim
settings. This may cause the motors to move slowly, even when the transmitier stick is centered,
If you encounter this, either consult your receiver manual to reprogram the startup position, or
adjust your transmitker trims until the motors stop moving. As a last resort, you can enter RAC
microcontroller mode which will disable Sabertooth’s autocalibration.

Mode 3: Simplified Serial Mode

Simplified serial uses TTL level single-byte serial commands to set the motor speed and
direction. This makes it easy to inerface to microcontrollers and PCs, without having to
implement a packetbased communications protocol. Simplified serial is a one-direction only
interface. The transmit line from the host is connected to 51, The host’s receive line is not
connected to the Sabertooth, Because of this, multiple drivers can be connected to the same serial
transmitter. If using a true R5-232 device like a PC's serial port, it is necessary to use a level
converter to shift the —10W to 10V rs-232 levels to the Ov-3v TTL levels the Sabertooth is
expecting. This is usually done with a Max232 type chip. If using a TTL serial device like a
microcontroller, the TX line of the microcontroller may be connected directly to S1.

Because Sabenooth controls two motors with one 8 byte characeer, when operating in Simplified
Serial mode, each motor has 7 bits of resolution. Sending a character between 1 and 127 will
control motor 1. 1 is full reverse, 64 is stop and 127 is full forward. Sending a character between
128 and 235 will control motor 2. 128 is full meverse, 192 is stop and 233 is full forward.
Character 0 {hex Ox() is a special case. Sending this character will shut down both motars.

Baud Rate Selection

Simplified Serial operates with an 8N 1 protocol — 8 data bytes, no parity bits and one stop bit
The baud rate is selecied by switches 4 and 5 from the following 4 options

- e - e e rTTTYTYTTYW

2400 Baud: 01x00x 9600 Baud: 01x10x

- - e - - - - - e e - W

19200 Baod: 01x01x 38400 Baud: 01x11x

‘What baud rate to use is dependent on what your host can provide and the updake speed
necessary. P60 baud or 19200 baud is recommended as the best starting points, If
communication is unmeliable, decrease the baud rate. If communications are reliable, you may
increase the baud rate, The maximum update speed on the Sabertooth is approximately 2000
commands per second. Sending characters faster than this will not cause problems, but it will not
increase the responsivencss of the controller either,

The baud rate may be changed with power on by changing the DIP switch settings. There is no
need to meset or cyche power after & baud rake change.

There are 2 operating options for Simplified Seral. These ame selected by the position of Switch
6.

Option 1: Standard Simplified Serial
Mode

Serial data is sent to input S1. The baud rate is selected
with switches 4 and 5. Commands are sent as singke bytes.
Sending a value of 1-127 will command motor 1 Sending a
value of 128-255 will command motor 2. Sending a value
of 0 will shut down both motors.

Option 2: Simplified Serial with Slave
Select

- . e e e w

Standard Simplified Serial

This mode is used when it is desirable to have multiple
Sabertooth motor drivers running from the same serial
transmitter, but you do not wish to use packetized serial. A
digital signal (Ov or 5v) is fed to the S2 input. This is
controlled by the host microcontroller. If the signal on 82 is

Simplified Serial with Slave Select

logic high (5v) when the serial command is sent, then the driver will change to the new speed. If
the signal on S2 is not high when the command is sent, then command will be ignored. Pseudo-
code demonstrating this is shown below. After sending the signal, allow about 50 us before
commanding the Slave Sclect line to a logic LOW to allow time for processing. A hookup
diagram and example pscudo-code are shown in Figures 6.2 and 6.3.

[Battery |

/lset controller 1's speed

Output_High (S2 pin on controller 1)
USART_TX(controller 1 speed, 0 to 255)
Delay_us(50)

Output_Low (S2 pin on controller 1)

liset controller 2's speed

Output_High (S2 pin on controller 2)
USART_TX(controller 2 speed, 0 to 255)
Delay_us(50)

Output_Low (S2 pin on controller 2)

| Figure 6.2: Hookup for Slave Select Figure 6.3: Pscudocode for Slave Select

Mode 4: Packetized Serial Mode

Packetized Serial uses TTL level multi-byte serial commands to set the motor speed and
direction. Packetized serial is 2 one-direction only interface. The transmit line from the host is
connected to 51, The host's receive line s not connected to the Sabertooth. Because of this,
multiple Sabertooth 2x10 motor drivers can be connected to the same serial transmitter. [t is also
possible to use SyRen and Sabertooth motor drivers together from the same serial source, as well
as any other serial device, as long as it will not act on the packets sent to the Saberooth. If using
a true R5-232 device like a PC's serial port, it is necessary to use a kevel converter to shift the —
10V to 10V rs-232 levels to the Ov-3v TTL. Packetized serial uses an address byte (o select the
target device. The baud rake is selected awtomatically by sending the bauding character (170 in
decimal, AA in hex) before any commands ane sent.

Packet Overview

The packet format for the Sabertooth consists of an address byie, a command byie, a data byte
and a seven bit checksum. Addmss bytes have value greater than 128, and all subsequent bytes
have values 127 or lower, This allows multiple types of devices to share the same serial line,

Anexample packet and pseudo-code to generate it are shown in Figures 7.1 and 7.2

¥oid DriveForward({char addmess, char speed)

Packet l

Address: 130 Putci{address);

Command : 0 Pute(l);

Data: 64 Putci{spesd);

Checksum: 66 Putc{{addmess + 0 + speed) & 0001111111

Figure 7.1: Example 50% forward Figure 7.2: Pseudocode o generate 7.1

Baud Rate Selection:

Packetized Serial operates with an 8N1 protocol — B data bytes, no parity bits and one stop bit
The baud rate is automatically calculated by the first character sent. This character must be (170
in decimal) (binary 10101010) and must be sent before any serial communications ane done. It is
not possible to change the band rake once the bauding character has been sent The valid baud
rates are 2400, 9600, 19200 and 38400 baud. Until the bauding character is sent, the driver will
accept no commands and the green status] 1ight will stay lit Please note that Sabertooth may
take up to a second to start up after power is applied, depending on the power source being used.
Sending the bauding character during this time period may cause undesirable results. When
using Packe tized Serial mode, please allow a two-second delay between applying power and
sending the bauding character to the drivers

Address Byte Configuration:

Address bytes are set by switches 4, 5 and 6. Addresses start at 128 and go to 135. The switch
settings for the addresses are shown in the chart below

|
-
3
-~

- -

Address: 120

- . -

- W

Address: 134 Address: 135

Commands:

The command byte is the second byte of the packet There are four possible commands in
packetized serial mode. Each is followed by one byte of data

0 Drive forward motor 1 {decimal §, binary ObHMH0000, hex 0k
This is used to command motor 1 to drive forward. Valid data is 0-127 for off to full foreand
drive. If a command of 0 is given, the Sabenooth will go into power save mode for motor 1 after

approximately 4 seconds,

1: Drive backwards motor 1 (decimal 1, binary 0b00000001, hex 0h01)

This is used to command motor 1 to drive backwards. Valid data is 0127 for off to full reverse
drive. If a command of 0 is given, Sabertooth will go into power save mode for motor 1 after
approximately 4 seconds.

2: Min voltage (decimal 2, binary 0000010, hex 0h02)

This is used to set a custom minimum voltage: for the batiery feeding the Sabertooth. 1f the
battery voltage drops below this value, the cutput will shut down. This value is cleared at startup,
s0 much be set each run. The valoe is sent in . 2 volt increments with a command of zero
comesponding to fv, which is the minimum. Valid data is from 0 to 120. The function for
comverting volts to command data is

Value = (desired volts-6) x 3

3: Max voltage (decimal 3, binary 0b0000011, hex 0h03)

This is used to set a custom maximum voltage. If you anre using & power supply that cannot sink
current such as an ATX supply, the input voltage will rise when the driver is regenerating
(slowing down the motor) Many ATX type supplies will shot down if the output voltage on the
12v supply rises beyond 16v. If the driver detects an input voltage above the set limit, it will put
the motor into a hard brake until the voltage drops below the set point again. This is inefficient,
because the energy is heating the motor instead of recharging a battery, but may be necessary.
The driver comes preset for 2 maximum voltage of 30V, The range for a custom maximum
voltage is (hv-23v. The formula for setting a custom maximum voltage is

Value = Desired Volts*3, 12

If you are using amy sort of batery, then this is not a problem and the max voltage should be left
at the startup defanlt

4: Drive forward motor 2 (decimal 4, binary 0b000001 M, hex 0hi4)

This is used to command motor 2 to drive forward. Valid data is 0-127 for off to full forward
drive. If a command of 0 is given, the Sabertooth will go into power save mode for motor 2 after
approximately 4 seconds,

5: Drive backwards motor 2 (decimal 5, binary 0b00000101, hex 0h05)
This is used to command motor 2 to drive backwards., Valid data is 0-127 for off to full reverse
drive. If a command of) is given, the Saberiooth will go into power save mode after

approximately 4 seconds.

6: Drive motor 17 bit (decimal 6, binary 0b0M0110, hex 0h0s)

This command is wsed to drive motor 1. Instead of the standard commands 0 and 1, this one
command can be used to drive motor | forward or in reverse, at a cost of lower resolution, A
command of will correspond to full reverse, and 2 command of 127 will command the motor to
drive full forward, A command of 64 will stop the meotor,

T: Drive motor 27 bit (decimal 7, binary 0b0000111, hex 0h07)

This command is used to drive motor 2. Instead of the standard commands 4 and 35, this one
command can be used to drive motor 1 forward or in reverse, at a cost of lower esolution. A
command of 0 will correspond to full reverse, and a command of 127 will command the motor to
drive full forward, A command of 64 will stop the motor,

Mixed mode commands:

Sabertooth can also be sent mixed drive and turm commands. When using the mired mode
commands, please note that the Sabertooth reguires valid data for both drive and turn befone it
will begin to operate. Once data for both has been sent, then each may be updated as needed, it is
not necessary (o send both data packets each ime you with to update the speed or direction. You
should design your code to edther use the independent or the mixed commands. Switching
between the command sets will cause the vehicle to stop until new data is sent for both motors.

&: Drive forward mixed mode (decimal 8, binary 000001000, hex 0hiE)
This is used to command the vehick: to drive forward in mixed mode. Valid data is (-127 for off
to full forward drive.

9: Drive backwards mixed mode (decimal 9, binary 000001001, hex 0h0%)
This is used to command the vehicke to drive backwards in mixed mode. Valid data is - 127 for
off to full reverse drive.

10: Turn right mixed mode (decimal 10, binary ObMM1010, hex M)
This is wsed to command the vehicle to turn right in mixed mode. Valid data is 0-127 for zero o
maximum tuming speed.

11: Drive turn left mixed mode (decimal 11, binary 0b00001011, hex 0hilh)
This is used to command the vehick: to turn leftt in mixed mode. Valid data is 0-127 for zzro to
maximum tuming speed.

12: Drive forwards'back 7 bit (decimal 12, binary 0b00001 104, hex 0hic)
This is used to command the vehick: to move forwands or backwards. A command of 0 will
cause maximum reverse, 64 will cause the vehicle to stop, and 127 will command full forward.

13: Turn 7 hit (decimal 13, binary 0b04001101, hex 0lid)

This is used to command the vehicle turn right or left. A command of 0 will cause maximuom left
turm rate, 64 will cause the vehicle (o stop tuming , and 127 will command maximum right tum
rate.

Checksum:

T prevent data corruption, each packet is terminated with a checksum. If the checksum is not
comrect, the data packet will not be acted upon. The checksum is calculated as follows:

Checksum = address byte +command byte +data byt

The checksum should be added with all unsigned 8 bit integers, and then A NDed with the mask
001111111 in an B bit syskem.

Example of Packetized Serial:

The following is an example function for commanding two Dimension Engineering motor
drivers using Packetized Senal Mode. Figure 7.3 shows an example hookup and Figure 7.4
shows an example function,

Void DriveForwardichar addmess, char speed)
{

Putc{address)y;

Putcily;

Pute{speed);

Putc{(address + 0 + speed) & 0b01111111),
}

| M i il b

Figure 7.3: Packetized serial hookup Figure 7.4: Packetized Serial Function

Example: So in this function, if address is 13, command is 0 {for driving forward), speed is 64,
the checksum should calculate as follows:

13040464 = 194

194 in binary is Ob1 1000010

O] 1010 & 0D 111111 = Okl 1 D010

(Once all the data is sent, this will resultin the Sabertooth with addness 130 drving forward at
roughly half throtile.

Emergency Stop:

In Packetized Serial mode, the 52 input is configured as an active-low emergency stop. [tis
pulled high intemally, so if this feature isn't needed, it can be ignored, If an emergency stop is
desired, all the 52 inputs can be tied together. Pulling the 52 input low will cause the drver to
shut down. This should be tied to an emergency stop button if used in a device that could
endanger humans.

