
Calculator

Sander Babby, Alin Stan, Dustin Hoskins

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

sgbabby@oakland.edu, amstan2@oakland.edu, dhoskins@oakland.edu

Abstract

The purpose of the project was to build a simple calculator

using a keypad, LCD, and FPGA (Nexys 4). The calculator

would be able to add, subtract, multiple, and divide 4 bit

numbers. The project was a great learning experience for

digital logic and VHDL. An example is interfacing multiple

components and performing computations on the FPGA. The

project was able to perform properly in simulation, but it did

not perform correctly in real life because of a timing issue

with the outputting the result to the LCD. A recommendation

would be to keep the signal high long enough for the LCD to

print the result.

I. INTRODUCTION

The scope of the project was building a 4-bit calculator

using a keypad, LCD, and FPGA (Nexys 4). The team

wanted a project that would involve many topics covered in

ECE 378 and challenge the team to complete the project.

This was a good project to do because it incorporates many

different digital logic principals such as external interfaces

and architecturally based with arithmetic operations. Some

of the topics that were covered in class were decoders,

Arithmetic Logic Unit (ALU) design, and Finite State

Machines (FSMs). Topics that had to be researched outside

of class were interfacing a keypad and LCD to the Nexys 4.

This project has many applications such as being used as a

traditional calculator, app on a smartphone, or a part of a

larger project that would need calculations performed. Many

modern electrical and software applications depend on

calculations to be performed in real time in the background

using a calculator such as the one in this project.

II. METHODOLOGY

A. Keypad

A decoder in the project represented the keypad. The
decoder would receive a signal from the ALU to determine to
clear or not. It would also receive an input from the keypad.
The way this works is if a key is being pressed it determines
it by matching the row being pressed with what column in that
row is being pressed. That is how the keypad determines
which key is inputted. The keypad in addition to the value
being sent that is being pressed, it would send two additional
signals to the ALU. These signals were a zO and a ZN. These
would be high or low depending if a number was pressed or if
an operator was pressed. If the value of output from the value

from the decoder was less than 10, then zN would be high and
zO would be low. Likewise, if the value from the decoder was
greater than 9, then zO would be high and zN would be low.
This would help the ALU determine if numbers or if operators
were being pressed. The LCD did not need this data since it
displays what is pressed and not running background
computations.

The keypad was switched to the switches halfway
throughout the project. This was done to remove any variation
coming from the keypad. The original keypad had a bend in
the ribbon cable, which was causing bouncing between rows.
The decoder stayed the same in what it was inputting and
outputting. Later in the project, a new keypad was received
and tested. This newer keypad was able to work well with
minimal bouncing. The newer keypad was not connected to
the project at the end because the team did not want the
minimal bouncing to hinder test to allow for quicker debug
time. The decoder code did account for bouncing inside of the
code. This is what took care of most of the bouncing in the
keypad.

B. Arithmetic Logic Unit

The ALU represented the brain of the project. Its job was
to be able to receive the numbers that the user inputs and
output the result. The use would input numbers in decimal and
would expect to see a decimal output. This was the first
obstacle that we faced. The numbers would be coming in and
it was up to the ALU to figure out what the input was, and
what the operand was. If a user enter a 1, 2, and then 3. The
ALU had to take those 3 separate inputs and make it the
decimal number 123. This was done by using a state machine.
In the first state the machine would receive the first number,
store it in a variable, and then go to the next state. This state
would multiple the first number by 10 and then add the second
input to this number before going to state three. In each state
it would take the previous states result and multiple it by 10,
then add the new input. If at any time the ALU received an
operator (+ - * %) the state machine would stop and hold its
current value. There were two of these state machines used.
One to capture the first number, and one to capture the second.
There was a parent State machine which controlled all aspects
of the ALU’s functions. In state 1 of the ALU state machine it
would enable to first number catcher. It would only change
states when an operator was received. Then in state 2 it would
disable the first number catcher and enable the second. It
would stay in state 2 until it received the input for equals. It
would then transition to state 3. This state performed the
calculations using a series of if statements and would then

output the result to the LCD’s divider. The FSM is outlined in
below in figure 1.

Figure 1. FSM of project ALU.

C. LCD

 We attached an LCD Unit to our Nexys 4 Board. The main

code came from Dr. Llamocca [1][2]. The rest of the code we

created ourselves. For the first portion of the equation, which

we consider as the first number input, the operator, the second

number input and the equals input is a direct link to the LCD.

When you select an input on the switches, or if using the

keypad, pushing a button, the LCD automatically write the

character received. There is a component called a divider,

which is really just a state machine, which takes in a 4-bit

number and converts that to an ASCII character and then that

gets sent to the LCD. The divider stay in the same state and

keeps writing to the LCD until the equals sign is pushed.

When the equals sign is pushed the divider moves into state

two. In state two the divider no longer receives an input from

the switches; it now receives an 8 bit input from the ALU, it

also sends an enable to the next component called result

catch. The number from the ALU can be anywhere from zero

to 225 in decimal. The divider then starts ripping the number

apart in order to try and get the characters. It has 3 outputs.

All of them are zero at first and the outputs are in ASCII 8 bit

notation. First the divider checks if the number is greater than

200, if it is then the first output will be a 2 and subtracts 200

from the input and saves it into input2, if it is between 100

and 199 then the first output is a 1 subtracts 100 from the

input and saves it into input2, if it is less than 100 then output

one is blank and saves input to input2. Then the divider

checks for the numbers by 10’s outputs the number to output2

and subtracts the largest multiple of 10 from it and saves the

remainder into input3. It then finally outputs input3 to

output3 and send a finished signal to the result catch.

 The 3 outputs are now inputted into result catch,

which is another state machine. This state machine is

designed to slow down the writing process and output each

number one at a time to the LCD. The LCD was receiving the

numbers to fast so we tried to slow down the output. This is

where things started going wrong. We were never able to

output the final result to the LCD. We believe this is due to

the timing required by the LCD. We also had to implement

an enable signal for the LCD, which also came from this

result catch. We were able to show that the calculator does

actually work through a simulation; however we are not able

to show the actual result on the LCD. Based on the timing

diagram show below we believe that we were sending the

signal out at the wrong time and the LCD was not ready to be

written to, and was not correctly enabled at the right time and

for the right amount of time. We should have seen the rs as

high and e as high in order for us to write to the LCD, which

in our case did not happen as it should have as represented in

figure 2 below [3].

Figure 2. Timing required to write to LCD.

III. EXPERIMENTAL SETUP

To verify the functionality of the calculator different
hardware and software test methods were used. For the
software, Xilinx to code, debug, and simulate the project.
Each individual component was simulated in Xilinx’s ISim to
verify it was working correctly. After this was accomplished,
the components were combined into a top level and simulated
to verify the functionality of the top level.

For the hardware, the components were tested individually
to verify functionality. An example of this is connecting the
keypad to the Nexys 4, pressing a button, and outputting the
result to the seven-segment display of the Nexys 4. This was
also done with the ALU by inputting values from the switches
and outputting the result to the seven-segment display. For the
LCD, values were inputted using the switches and then sent to

the LCD by pressing a pushbutton on the Nexys 4. The value
was being displayed in ASCII on the LCD.

After components were individually tested, they were
combined together to verify the functionality of the system.
This was accomplished by connecting the keypad and LCD to
the Nexys 4. On the keypad, entering a number followed by a
arithmetic operator then another number and the equals
operator will send the necessary signal to the ALU and LCD.
As buttons are being pressed on the keypad, the LCD is
displaying what is being entered. The ALU is performing the
necessary calculations as buttons are pressed so that once the
equal operator is pressed, the result is sent to the LCD to
display it. The LCD should then display the result next to
commands that were entered. Also, to rule out any bouncing
by the original keypad, switches were used to send the signal
to the ALU and LCD in testing. This should display the
numbers entered, the arithmetic operator, equal operator, and
the result on the LCD.

IV. RESULTS

The project produced results as expected for the most part.

In simulation, the project was able to send the signals

correctly to and from components then send the final result to

the LCD. In implementation, the calculator performed

similarly to the simulation except with not displaying the

calculated result. The LCD would receive the result but

would not show the result being displayed. Besides the LCD

not displaying the result, the rest of the projected would

worked properly. For example, the signals being sent to the

ALU and the LCD from the keypad were correct. The ALU

would then take the signals, properly perform the necessary

calculations, and then send the result to the LCD. The LCD

would take the result as an input, but a timing delay issue

would cause the LCD not have enough time to write the result

on the display. Besides the result, the LCD would show the

numbers being entered into the system, the arithmetic

operator, and the equal operator on the display.

The project was able to perform correctly because of topics

covered in ECE 378. FSMs were able to work as a control for

the calculator within the ALU to send, receive, and calculate

signals as needed for the project. The LCD was also

implemented using a FSM. The keypad was able to work by

using a decoder. Besides the LCD not displaying the

calculated result, the calculator performed as expected. The

results in the projected were explainable. For example,

switching keypads removed the bouncing for the most part

because the connection was not bent as such in the original

keypad. Although the result did not display on the LCD, this

was explainable because the signal was not being sent long

enough to the LCD for it to write the result.

V. CONCLUSIONS

This project was an exceptional learning experience for

implementing the topics covered in ECE 378 in a real world

project. The team was able to gain experience with important

topics such as FSMs, ALU, decoders, computer arithmetic,

and VHDL programming. Another important take away from

this project was working as a team to integrate individual

components that work separately on its own but require work

to implement correctly together. This will provide as

excellent experience when moving into industry and working

with teams in large corporations.

As discussed, the project did not perform 100% as

expected. The main issue remaining was the result not being

displayed on the LCD and connecting the keypad to the final

system. Displaying the result to the LCD could be improved

by determining the proper timing when displaying a result

from the ALU instead of the keypad. Once the correct timing

delay is found, then the result could be displayed on the LCD.

Another alternative would be to displaying the result to the

seven-segment display. This could have been done either for

demonstration purposes in class or as a permanent solution to

the LCD not displaying the result. Furthermore, the keypad

could have been improved by improving the minimal bounce

that was left in the keypad.

The project was able to enhance the team’s understanding

of digital logic and provide lessons learned for moving

forward in school and industry.

REFERENCES

[1] Llamocca, Daniel. “[ECE378] Final Project.” Message to the
authors. 2 Apr. 2015. E-mail.

[2] Llamocca, Daniel. “Re: ece 378 Final project.” Message to the
authors. 20 Mar. 2015. E-mail.

[3] Hitachi. HD44780U (LCD-II). Tokyo, Japan: Hitachi, 1998.
PDF.

[4] Haskell, Richard E., and Darrin M. Hanna. Digital Design
Using Digilent FPGA Boards. Rochester Hills, MI: LBE
Books, 2009. Print.

