
FPGA Pong

For your happy entertainment

Matthew Michalewicz, Steven Stewart

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: mrmichal@oakland.edu, spstewar@oakland.edu

Abstract— This project implements the game known as Pong

onto an Artix 7 FPGA on the Nexys 4 development board. The

video signal is output to a VGA monitor and players interface

with the game through on-board push buttons. A game is the

best way to develop and exhibit mastery of machinery since it is

the highest form of connection between man and machine.

I. INTRODUCTION

The purpose of this project is for the team members to
develop mastery over the FPGA by interfacing with peripheral
devices. This was accomplished through a recreation of Pong,
a classic video game originally released in 1972. Pong is a
simple game, composed of a ball and two paddles, as well as
a wall on the top and bottom of the screen for the ball to
bounce against. Players lose the game by failing to hit the
ball.

In order to implement the game, a VGA interface needed
to be implemented as well as control via push buttons onboard
the Nexys 4. The VGA controller was covered in class, but
dynamic image generation had to be learned. As far as the
implications of our project, it helped demonstrate the concepts
that were learned and were applied in a unique manner.

II. METHODOLOGY

A. Top Level

The top level design of the project can be found below.
Figure 1 shows the block that was in charge of generating and
controlling all of the objects on the screen. This was the main
area of the project, and is explained further in Section B..
Figure 2 shows the VGA controller that was made available
by Professor Llamocca. For this code, the switches were not
used as the inputs as they were in the original code. Instead,
the output of the first block, RGB, was fed into as an input to
the VGA controller. This allowed the colors generated from
that block to be effectively displayed to the VGA screen. Also,
the 3-bit RGB version of the VGA controller was utilized.
Finally, the overall ASM is shown in Figure 3. This was used
to handle the different rounds of the game. It is discussed more
in Section C.

Figure 1: Top Level Module

B. Datapath Circuit

The main part of the project dealt with creating and
moving the objects on the VGA screen. The VGA display and
VGA controller were taken from the code that was made
available by Professor Llamocca. The objects were generated
by assigning constant values to the sides of each object. For
example, both paddles were given a width of 10 pixels and a
height of 120 pixels. Also, the distances from the sides of the
screen were initially assigned for each object. Every distance
was measured in relation to the top and left sides of each
object. If the bottom and right sides of each object were
required, the height and width were added, respectively. These
distances were chosen in reference to the top and left sides of
the screen, since this is the manner in which the VGA display
code writes to the screen. Some of these values, like the
positions of the walls and the horizontal positions of the
paddles, were static and were assigned as constants. The
vertical positions of the paddles and both the horizontal and
vertical positions of the ball were constantly changing, so
these were assigned as signals.

Figure 2: VGA Module

The objects were drawn to the screen by the VGA

controller. This was done by having a statement that checked
the current position of the object with the vertical and
horizontal count of the VGA controller. When the count was
in between coordinates that were assigned to an object, an
“on” signal went high. There was one of these signals for
every object, and they were all concatenated together with the
“video_on” signal from the VGA display. This new signal was
then used as a select line for a multiplexer. Each object also
had its own RGB color code assigned to it, and these codes
were the inputs to the multiplexer. Whenever the count
reached the area on the screen where an object was supposed
to be drawn, the RGB color of the object was drawn on the
screen. The purpose of this multiplexer is to toggle through
the different objects, depending on what “on” signal is
currently high. It toggles fast enough that it looks like every
object is displayed on the screen at the same time.

The paddles and the balls needed to be able to move
around the screen. To do this, a constant was assigned for each
object, and this was denoted as the velocity of the object. This
velocity was added to the position of the object so at the next
tick, the object would move as many pixels as the velocity was
defined as. For example, the paddles had a velocity of 10, so
they moved 10 pixels every clock tick. However, since the
clock cycle was in the order of nanoseconds, one press of the
of the button would almost instantly send the paddle from one
end of the screen to the other, which would not be very useful.
To account for this, a counter was implemented that created a
signal that acted as a 60 Hz clock. Every object update
occurred whenever this signal went high. For the paddle
example, this allowed the paddle to move 10 pixels 60 times
a second at the max. This allowed the paddle to move from
one end of the screen to the other in about a second, which
was reasonable for the purpose of the game.

 The animation of the ball was much more
challenging than the paddle, since the ball had to move both
vertically and horizontally, and it was not controlled by an
input like the paddles were. The vertical and horizontal speeds

were equal, so that the ball constantly moved at a 45 degree
angle. This occurred as long as the ball was in the bounds of
the screen. The ball also needed to have its direction change
whenever it came into contact with another object. This hit
detection was the most challenging area of the project. To
accomplish this, the coordinates of the ball were checked with
the coordinates of the other objects through comparison
operators. For example, if the distance from the top of the
screen to the bottom of the ball was greater than or equal to
the distance from the top of the screen to the top of the bottom
wall, then the ball’s vertical velocity was reversed so it
bounced up. The detection with the paddles was more
complicated because both horizontal and vertical components
needed to be compared. A hit was detected when the
coordinates of the top and bottom of the ball were in between
the coordinates of the top and bottom of the corresponding
paddle, respectively, for the vertical count. The ball also had
to have its horizontal coordinates match up with the position
of the side of the paddle. This would then reverse the
horizontal speed of the ball, sending it in the opposite
direction. However, if the ball missed the paddle then the
round would end, the winner would be displayed on the LEDs,
and a new round would begin once the start button was
pressed.

C. Control Circuit

The ASM for the “Object Controller” FSM is as follows:

Figure 3: Main finite state machine

State 1: This is the initialization state that is entered upon

resetting the circuit. During this state, neither the ball nor the
paddles are able to be moved. State 2 is entered when the start
button is pushed.

State 2: The game is run within this state. The ball moves
and the paddles can be controlled. If no hit is detected, the
screen is updated with the new positions of the ball and
paddles.

States 3 and 4: These states are entered when either player
scores. This illuminates either the leftmost 8 LEDs or the

rightmost 8, depending on which player scored. The
game remains in this state until the start button is pressed.
This allows the score LEDs to remain illuminated until the
players are ready for a new round. Once the start button is
pushed, the program returns to State 2 and the game begins
again.

The draw screen and enable motion outputs are fed to
the “Object Generator” module, which then fed information
to the VGA display module. The “Object Generator” sends
hit detection signals back to the “Object Controller,”
allowing for the state to update.

III. EXPERIMENTAL SETUP

Figure 4: Control Scheme

Player 1 (Red): U to move paddle up, L to move down
Player 2 (Blue): R to move paddle up, D to move down
C to start a match

The project was verified by observing the output to the
VGA monitor and testing whether the push buttons acted
appropriately. Additionally, the game’s response to a
collision or miss between the ball and paddle was observed
to ensure scoring was accurately tracked. Unfortunately,
simulation test benches were not very useful for testing
since the game includes both high frequency pixel updates
as well as game events which happen every few billion
nanoseconds. As a result, simulations were difficult to work
with and provided extremely limited usefulness in system
validation. Testing the FSM that kept track of score would
have required additional input signals for strictly diagnostic
purposes.

IV. RESULTS

Overall, the project turned out pretty well. While it is
not perfect, playing the game is still satisfying. The paddles
respond exactly the way they should whenever the
appropriate button is pressed. The ball responds whenever
it hits another object by moving in the appropriate direction.
It resets to the middle of the screen correctly and will not
move unless the start button is pressed. The appropriate
LEDs are lit up whenever the ball is scored as well. The
reset button accurately resets the screen and the LEDS. A
link to a video of the game being played is found below:

https://www.dropbox.com/s/09thoe6zeugumkm/pong_

video.mp4?dl=0

There were still a few issues with the performance,

though. The hit detection between the ball and the paddle
was inaccurate at times. For example, there was a case that

occurred at times where the ball would pass right through
the top of the paddle. In this case, a collision should have
been detected, but the ball passes through and scores, which
is frustrating for the user. A link to a video of this
occurrence is found below:

https://www.dropbox.com/s/3k5yb1f94keazg7/hit_dete

ction_issue.MOV?dl=0

The only major possible source of issues was brought to

attention by Professor Llamocca. Since the objects needed
to respond in a manner that was slower than the initial clock
speed, a divider was used to slow it down for the object
animations. However, the conditions were all set to occur
when the clock signal was high, and the event condition was
not included. This causes what is known as a latch, and can
cause numerous issues in VHDL. It is likely that this had at
least some effect on all of the issues that were encountered.
For the most part, this error was able to be avoided in the
final project to produce a working game.

CONCLUSIONS

There are a lot of improvements that could be made to
this project. The obvious choice would be to address the
issues that still lie in the code, such as the latch issue, and
improve the overall reliability of the program. Score
keeping for multiple rounds was another goal that was
desired, but never reached. If this was achieved, a max score
could be set and a winner could be determined, and some
sort of victory screen could accompany it to make the
experience more satisfying. Sound could also be added for
the bounces of the ball to add more immersion to the game.
Ultimately the project was a success, despite the issues that
were had. Perhaps if the latching issue had been discovered
earlier, more features could have been implemented instead
of troubleshooting intermittent errors that made no sense.
For instance, score keeping functionality was coded, but
was never successfully implemented. Regardless, the
project was a great learning experience. Even though the
final product was not able to utilize all of the functionality
that coded, the project ended in a respectable state with the
core functionality of Pong.

REFERENCES

[1] G. O’Brien, “VHDL VGA Pong,” http://www.digital-
circuitry.com/VHDL_VGA_PONG.htm

https://www.dropbox.com/s/09thoe6zeugumkm/pong_video.mp4?dl=0
https://www.dropbox.com/s/09thoe6zeugumkm/pong_video.mp4?dl=0
https://www.dropbox.com/s/3k5yb1f94keazg7/hit_detection_issue.MOV?dl=0
https://www.dropbox.com/s/3k5yb1f94keazg7/hit_detection_issue.MOV?dl=0

